A neuroscientific model of near-death experiences

4 months ago 9
  • Heim, A. Jahrbuch des Schweizer Alpenclub / 27 Notizen über den Tod durch Absturz (Verlag der Expedition des Jahrbuchs des S.A.C., 1892).

  • Moody, R. Life After Life (Bantam, 1975).

  • Hou, Y., Huang, Q., Prakash, R. & Chaudhury, S. Infrequent near-death experiences in severe brain injury survivors — a quantitative and qualitative study. Ann. Indian Acad. Neurol. 16, 75 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rousseau, A.-F. et al. Incidence of near-death experiences in patients surviving a prolonged critical illness and their long-term impact: a prospective observational study. Crit. Care 27, 76 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Greyson, B. Incidence and correlates of near-death experiences in a cardiac care unit. Gen. Hosp. Psychiatry 25, 269–276 (2003).

    Article  PubMed  Google Scholar 

  • Klemenc-Ketis, Z., Kersnik, J. & Grmec, S. The effect of carbon dioxide on near-death experiences in out-of-hospital cardiac arrest survivors: a prospective observational study. Crit. Care 14, R56 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Parnia, S. et al. AWARE — AWAreness during resuscitation — a prospective study. Resuscitation 85, 1799–1805 (2014).

    Article  PubMed  Google Scholar 

  • Schwaninger, J., Eisenberg, P. R., Schechtman, K. B. & Weiss, A. N. A prospective analysis of near-death experiences in cardiac arrest patients. J. Near Death Stud. 20, 215–232 (2002).

    Article  Google Scholar 

  • van Lommel, P., van Wees, R., Meyers, V. & Elfferich, I. Near-death experience in survivors of cardiac arrest: a prospective study in the Netherlands. Lancet 358, 2039–2045 (2001).

    Article  PubMed  Google Scholar 

  • Parnia, S. et al. AWAreness during REsuscitation — II: a multi-center study of consciousness and awareness in cardiac arrest. Resuscitation 191, 109903 (2023).

    Article  PubMed  Google Scholar 

  • Mauduit, M. et al. Does hypothermic circulatory arrest for aortic surgery trigger near-death experience? Incidence of near-death experiences after aortic surgeries performed under hypothermic circulatory arrest. Aorta 9, 76–82 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Charland-Verville, V. et al. Near-death experiences in non-life-threatening events and coma of different etiologies. Front. Hum. Neurosci. 8, 203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Facco, E. & Agrillo, C. Near-death-like experiences without life-threatening conditions or brain disorders: a hypothesis from a case report. Front. Psychol. 3, 490 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondziella, D., Dreier, J. P. & Olsen, M. H. Prevalence of near-death experiences in people with and without REM sleep intrusion. PeerJ 7, e7585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Martial, C., Cassol, H., Laureys, S. & Gosseries, O. Near-death experience as a probe to explore (disconnected) consciousness. Trends Cogn. Sci. 24, 173–183 (2020).

    Article  PubMed  Google Scholar 

  • Fritz, P., Lejeune, N., Cardone, P., Gosseries, O. & Martial, C. Bridging the gap: (a)typical psychedelic and near-death experience insights. Curr. Opin. Behav. Sci. 55, 101349 (2024).

    Article  Google Scholar 

  • Martial, C. et al. Neurochemical models of near-death experiences: a large-scale study based on the semantic similarity of written reports. Conscious. Cogn. 69, 52–69 (2019).

    Article  PubMed  Google Scholar 

  • Timmermann, C. et al. DMT models the near-death experience. Front. Psychol. 9, 1424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Greyson, B. Dissociation in people who have near-death experiences: out of their bodies or out of their minds? Lancet 355, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Martial, C., Cassol, H., Charland-Verville, V., Merckelbach, H. & Laureys, S. Fantasy proneness correlates with the intensity of near-death experience. Front. Psychiatry 9, 190 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Noyes, R. & Slymen, D. J. The subjective response to life-threatening danger. OMEGA J. Death Dying 9, 313–321 (1979).

    Article  Google Scholar 

  • Owens, J., Cook, E. W. & Stevenson, I. Features of ‘near-death experience’ in relation to whether or not patients were near death. Lancet 336, 1175–1177 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Blackmore, S. J. & Troscianko, T. S. The physiology of the tunnel. J. Near Death Stud. 8, 15–28 (1989).

    Article  Google Scholar 

  • Blanke, O. & Arzy, S. The out-of-body experience: disturbed self-processing at the temporo-parietal junction. Neuroscientist 11, 16–24 (2005).

    Article  PubMed  Google Scholar 

  • Nelson, K. R., Mattingly, M., Lee, S. A. & Schmitt, F. A. Does the arousal system contribute to near death experience? Neurology 66, 1003–1009 (2006).

    Article  PubMed  Google Scholar 

  • Raffaelli, B. et al. Near‐death experiences are associated with rapid eye movement (REM) sleep intrusions in migraine patients, independent of migraine aura. Eur. J. Neurol. 30, 3322–3331 (2023).

    Article  PubMed  Google Scholar 

  • Peinkhofer, C., Martial, C., Cassol, H., Laureys, S. & Kondziella, D. The evolutionary origin of near-death experiences: a systematic investigation. Brain Commun. 3, fcab132 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Long, J. & Perry, P. Evidence of the Afterlife: the Science of Near-Death Experiences (HarperOne, 2010).

  • Van Lommel, P. Non-local consciousness a concept based on scientific research on near-death experiences during cardiac arrest. J. Conscious. Stud. 20, 7–48 (2013).

    Google Scholar 

  • Zeman, A. What in the world is consciousness? Prog. Brain Res. 150, 1–10 (2005).

    Article  PubMed  Google Scholar 

  • Li, D. et al. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest. Proc. Natl Acad. Sci. USA 112, E2073–E2082 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel, E. R. A new intellectual framework for psychiatry. Am. J. Psychiatry 155, 457–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Sergent, C. & Naccache, L. Imaging neural signatures of consciousness: ‘what’, ‘when’, ‘where’ and ‘how’ does it work? Arch. Ital. Biol. 91, 106 (2012).

    Google Scholar 

  • Tononi, G. Consciousness, information integration, and the brain. Prog. Brain Res. 150, 109–126 (2005).

    Article  PubMed  Google Scholar 

  • Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Martial, C. et al. The Near-Death Experience Content (NDE-C) scale: development and psychometric validation. Conscious. Cogn. 86, 103049 (2020).

    Article  PubMed  Google Scholar 

  • Whinnery, J. E. & Whinnery, A. M. Acceleration-induced loss of consciousness. A review of 500 episodes. Arch. Neurol. 47, 764–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Annen, J. et al. Mapping the functional brain state of a world champion freediver in static dry apnea. Brain Struct. Funct. 226, 2675–2688 (2021).

    Article  PubMed  Google Scholar 

  • Lempert, T., Bauer, M. & Schmidt, D. Syncope: a videometric analysis of 56 episodes of transient cerebral hypoxia. Ann. Neurol. 36, 233–237 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Lempert, T., Bauer, M. & Schmidt, D. Syncope and near-death experience. Lancet 344, 829–830 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Martial, C. et al. EEG signature of near-death-like experiences during syncope-induced periods of unresponsiveness. Neuroimage 298, 120759 (2024).

    Article  PubMed  Google Scholar 

  • Pausescu, E., Lugojan, R. & Pausescu, M. Cerebral catecholamine and serotonin metabolism in post-hypothermic brain oedema. Brain 93, 31–36 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Javaheri, S., De Hemptinne, A., Vanheel, B. & Leusen, I. Changes in brain ECF pH during metabolic acidosis and alkalosis: a microelectrode study. J. Appl. Physiol. 55, 1849–1853 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Charnay, Y. & Léger, L. Brain serotonergic circuitries. Dialogues Clin. Neurosci. 12, 471–487 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathias, A. P., Ross, D. M. & Schachter, M. Identification and distribution of 5-hydroxytryptamine in a sea anemone. Nature 180, 658–659 (1957).

    Article  CAS  PubMed  Google Scholar 

  • Ishihara, A. et al. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. 54, 481–495 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Araneda, R. & Andrade, R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 399–412 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M. Serotonin and brain development: role in human developmental diseases. Brain Res. Bull. 56, 479–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, P. J., Tampakeras, M., Sinyard, J. & Higgins, G. A. Opposing effects of 5-HT2A and 5-HT2C receptor antagonists in the rat and mouse on premature responding in the five-choice serial reaction time test. Psychopharmacology 195, 223–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Varnäs, K., Halldin, C. & Hall, H. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum. Brain Mapp. 22, 246–260 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki, K., Miyazaki, K. W. & Doya, K. The role of serotonin in the regulation of patience and impulsivity. Mol. Neurobiol. 45, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki, K. W. et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr. Biol. 24, 2033–2040 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Carhart-Harris, R. L. & Nutt, D. J. Serotonin and brain function: a tale of two receptors. J. Psychopharmacol. 31, 1091–1120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstl, F. et al. Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. Neuroimage 41, 204–211 (2008).

    Article  PubMed  Google Scholar 

  • Kometer, M., Schmidt, A., Jancke, L. & Vollenweider, F. X. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33, 10544–10551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • William Moreau, A., Amar, M., Le Roux, N., Morel, N. & Fossier, P. Serotoninergic fine-tuning of the excitation–inhibition balance in rat visual cortical networks. Cereb. Cortex 20, 456–467 (2010).

    Article  Google Scholar 

  • González-Maeso, J. et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huot, P. et al. Increased 5‐HT2A receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Mov. Disord. 25, 1399–1408 (2010).

    Article  PubMed  Google Scholar 

  • Griffiths, R., Richards, W., Johnson, M., McCann, U. & Jesse, R. Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J. Psychopharmacol. 22, 621–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollenweider, F. X. & Kometer, M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat. Rev. Neurosci. 11, 642–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Carhart-Harris, R. L. et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl Acad. Sci. USA 109, 2138–2143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliazucchi, E. et al. Increased global functional connectivity correlates with LSD-induced ego dissolution. Curr. Biol. 26, 1043–1050 (2016).

    Article  CAS  PubMed  Google Scholar 

  • De Ridder, D., Van Laere, K., Dupont, P., Menovsky, T. & Van de Heyning, P. Visualizing out-of-body experience in the brain. N. Engl. J. Med. 357, 1829–1833 (2007).

    Article  PubMed  Google Scholar 

  • Arzy, S., Thut, G., Mohr, C., Michel, C. M. & Blanke, O. Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J. Neurosci. 26, 8074–8081 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arzy, S., Seeck, M., Ortigue, S., Spinelli, L. & Blanke, O. Induction of an illusory shadow person. Nature 443, 287 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Strassman, R. DMT: the Spirit Molecule: a Doctors Revolutionary Research into the Biology of Near-Death and Mystical Experiences (Park Street, 2001).

  • Michael, P., Luke, D. & Robinson, O. This is your brain on death: a comparative analysis of a near-death experience and subsequent 5-methoxy-DMT experience. Front. Psychol. 14, 1083361 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Peroutka, S. J. & Howell, T. A. The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology 33, 319–324 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Barnes, N. M. & Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Brouwer, A. & Carhart-Harris, R. L. Pivotal mental states. J. Psychopharmacol. 35, 319–352 (2021).

    Article  PubMed  Google Scholar 

  • Wutzler, A., Mavrogiorgou, P., Winter, C. & Juckel, G. Elevation of brain serotonin during dying. Neurosci. Lett. 498, 20–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Meldrum, B. S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S–1015S (2000).

    Article  CAS  PubMed  Google Scholar 

  • Edmonds, B., Gibb, A. J. & Colquhoun, D. Mechanisms of activation of glutamate receptors and the time course of excitatory synaptic currents. Annu. Rev. Physiol. 57, 495–519 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godaux, E. Les Neurones, Les Synapses et Les Fibres Musculaires (Editions Masson, 1997).

  • Tabone, C. J. & Ramaswami, M. Is NMDA receptor-coincidence detection required for learning and memory? Neuron 74, 767–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Paulsen, O. & Sejnowski, T. J. Natural patterns of activity and long-term synaptic plasticity. Curr. Opin. Neurobiol. 10, 172–179 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingledine, R. N-Methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells. J. Physiol. 343, 385–405 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Corazza, O. & Schifano, F. Near-death states reported in a sample of 50 misusers. Subst. Use Misuse 45, 916–924 (2010).

    Article  PubMed  Google Scholar 

  • Jansen, K. Near death experience and the NMDA receptor. BMJ 298, 1708 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen, K. L. R. The ketamine model of the near-death experience: a central role for the N-methyl-D-aspartate receptor. J. Near Death Stud. 16, 5–26 (1997).

    Article  Google Scholar 

  • Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334, 33–46 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138 (2003).

    Article  PubMed  Google Scholar 

  • Adell, A. Brain NMDA receptors in schizophrenia and depression. Biomolecules 10, 947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haaf, M., Leicht, G., Curic, S. & Mulert, C. Glutamatergic deficits in schizophrenia — biomarkers and pharmacological interventions within the ketamine model. Curr. Pharm. Biotechnol. 19, 293–307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halstead, J. M. et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höflich, A. et al. Ketamine-dependent neuronal activation in healthy volunteers. Brain Struct. Funct. 222, 1533–1542 (2017).

    Article  PubMed  Google Scholar 

  • Hussain, L. S., Reddy, V. & Maani, C. V. Physiology, noradrenergic synapse. StatPearls (StatPearls, 2023).

  • Borovsky, V., Herman, M., Dunphy, G., Caplea, A. & Ely, D. CO2 asphyxia increases plasma norepinephrine in rats via sympathetic nerves. Am. J. Physiol. 274, R19–R22 (1998).

    CAS  PubMed  Google Scholar 

  • Reiner, P. B. Correlational analysis of central noradrenergic neuronal activity and sympathetic tone in behaving cats. Brain Res. 378, 86–96 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Poe, G. R. et al. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci. 21, 644–659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones, G., Rajkowski, J. & Cohen, J. Locus coeruleus and regulation of behavioral flexibility and attention. Prog. Brain Res. 126, 165–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Murchison, C. F. et al. A distinct role for norepinephrine in memory retrieval. Cell 117, 131–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cahill, L. & Alkire, M. T. Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol. Learn. Mem. 79, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  • LaLumiere, R. T., McGaugh, J. L. & McIntyre, C. K. Emotional modulation of learning and memory: pharmacological implications. Pharmacol. Rev. 69, 236–255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tully, K., Li, Y., Tsvetkov, E. & Bolshakov, V. Y. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl Acad. Sci. USA 104, 14146–14150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timofeev, I. & Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ramadan, W., Eschenko, O. & Sara, S. J. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS ONE 4, e6697 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Martial, C. et al. Intensity and memory characteristics of near-death experiences. Conscious. Cogn. 56, 120–127 (2017).

    Article  PubMed  Google Scholar 

  • Thonnard, M. et al. Characteristics of near-death experiences memories as compared to real and imagined events memories. PLoS ONE 8, e57620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French, I. T. & Muthusamy, K. A. A review of the pedunculopontine nucleus in Parkinson’s disease. Front. Aging Neurosci. 10, 99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lew, C. H. & Semendeferi, K. in Evolution of Nervous Systems (ed. Kaas, J. H.) 277–291 (Elsevier, 2017).

  • Oswald, M. J. et al. Cholinergic basal forebrain nucleus of Meynert regulates chronic pain-like behavior via modulation of the prelimbic cortex. Nat. Commun. 13, 5014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemann, A. E. et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139, 1012–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotelo, J., Perez, R., Cuevara, P. & Fernandez, A. Changes in brain, plasma and cerebrospinal fluid contents of β-endorphin in dogs at the moment of death. Neurol. Res. 17, 223–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Kanchan, T., Rastogi, P. & Mohanty, M. Profile of near drowning victims in a coastal region of Karnataka. J. Indian Acad. Forensic Sci. 29, 52–54 (2007).

    Article  Google Scholar 

  • Morse, M. A near-death experience in a 7-year-old child. Arch. Pediatr. Adolesc. Med. 137, 959 (1983).

    Article  CAS  Google Scholar 

  • Blackmore, S. J. Near-death experiences. J. R. Soc. Med. 89, 73–76 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels, A. & Zeki, S. The neural correlates of maternal and romantic love. Neuroimage 21, 1155–1166 (2004).

    Article  PubMed  Google Scholar 

  • Craig, A. D. (Bud). Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn. Sci. 9, 566–571 (2005).

    Article  PubMed  Google Scholar 

  • Leibenluft, E., Gobbini, M. I., Harrison, T. & Haxby, J. V. Mothers’ neural activation in response to pictures of their children and other children. Biol. Psychiatry 56, 225–232 (2004).

    Article  PubMed  Google Scholar 

  • Martial, C., Charland-Verville, V., Dehon, H. & Laureys, S. False memory susceptibility in coma survivors with and without a near-death experience. Psychol. Res. 82, 806–818 (2018).

    Article  PubMed  Google Scholar 

  • Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Article  PubMed  Google Scholar 

  • Preller, K. H. et al. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr. Biol. 27, 451–457 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Creese, I., Burt, D. R. & Snyder, S. H. Dopamine receptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci. 17, 993–1001 (1975).

    Article  CAS  Google Scholar 

  • Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F. I., Bäbler, A., Vogel, H. & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897–3902 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Lutz, P. L., Nilsson, G. E. & Prentice, H. M. The Brain Without Oxygen: Causes of Failure-Physiological and Molecular Mechanisms for Survival (Kluwer Academic, 2002).

  • Martial, C., Fritz, P., Lejeune, N. & Gosseries, O. Exploring awareness in cardiac arrest studies: methodological challenges. Resuscitation 194, 109980 (2024).

    Article  PubMed  Google Scholar 

  • Greyson, B. Implications of near-death experiences for a postmaterialist psychology. Psychol. Relig. Spiritual. 2, 37 (2010).

    Article  Google Scholar 

  • Bartolomei, F. et al. The role of the dorsal anterior insula in ecstatic sensation revealed by direct electrical brain stimulation. Brain Stimul. 12, 1121–1126 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Picard, F. & Friston, K. Predictions, perception, and a sense of self. Neurology 83, 1112–1118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Arzy, S., Idel, M., Landis, T. & Blanke, O. Why revelations have occurred on mountains? Linking mystical experiences and cognitive neuroscience. Med. Hypotheses 65, 841–845 (2005).

    Article  PubMed  Google Scholar 

  • Burtscher, J. & Schwarzer, C. The opioid system in temporal lobe epilepsy: functional role and therapeutic potential. Front. Mol. Neurosci. 10, 245 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Landtblom, A.-M. The “sensed presence”: an epileptic aura with religious overtones. Epilepsy Behav. 9, 186–188 (2006).

    Article  PubMed  Google Scholar 

  • Sacks, O. Seeing God in the third millennium. How the brain creates out-of-body experiences and religious epiphanies. The Atlantic https://www.theatlantic.com/health/archive/2012/12/seeing-god-in-the-third-millennium/266134/ (2012).

  • Britton, W. B. & Bootzin, R. R. Near-death experiences and the temporal lobe. Psychol. Sci. 15, 254–258 (2004).

    Article  PubMed  Google Scholar 

  • Leung, L. C. et al. Neural signatures of sleep in zebrafish. Nature 571, 198–204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, R. et al. Evolutionary origin of distinct NREM and REM sleep. Front. Psychol. 11, 567618 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Peever, J. & Fuller, P. M. The biology of REM sleep. Curr. Biol. 27, R1237–R1248 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ohayon, M. M., Priest, R. G., Zulley, J., Smirne, S. & Paiva, T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 58, 1826–1833 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kondziella, D., Olsen, M. H., Lemale, C. L. & Dreier, J. P. Migraine aura, a predictor of near-death experiences in a crowdsourced study. PeerJ 7, e8202 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nelson, K. R., Mattingly, M. & Schmitt, F. A. Out-of-body experience and arousal. Neurology 68, 794–795 (2007).

    Article  PubMed  Google Scholar 

  • Mahowald, M. W. & Schenck, C. H. Dissociated states of wakefulness and sleep. Neurology 42, 44–51 (1992).

    CAS  PubMed  Google Scholar 

  • Maquet, P. et al. Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data. Prog. Brain Res. 150, 219–227 (2005).

    Article  PubMed  Google Scholar 

  • Blanke, O., Ortigue, S., Landis, T. & Seeck, M. Stimulating illusory own-body perceptions. Nature 419, 269–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Vagg, D. J., Bandler, R. & Keay, K. A. Hypovolemic shock: critical involvement of a projection from the ventrolateral periaqueductal gray to the caudal midline medulla. Neuroscience 152, 1099–1109 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Nicol, A. U. & Morton, A. J. Characteristic patterns of EEG oscillations in sheep (Ovis aries) induced by ketamine may explain the psychotropic effects seen in humans. Sci. Rep. 10, 9440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohlich, J., Toker, D. & Monti, M. M. Consciousness among delta waves: a paradox? Brain J. Neurol. 144, 2257–2277 (2021).

    Article  Google Scholar 

  • Vijayan, S., Lepage, K. Q., Kopell, N. J. & Cash, S. S. Frontal beta-theta network during REM sleep. eLife 6, e18894 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmermann, C. et al. Neural correlates of the DMT experience assessed with multivariate EEG. Sci. Rep. 9, 16324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, U. et al. Disruption of frontal–parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118, 1264–1275 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Sarasso, S. et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–3105 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Vlisides, P. E. et al. Neurophysiologic correlates of ketamine sedation and anesthesia. Anesthesiology 127, 58–69 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Vlisides, P. E. et al. Subanaesthetic ketamine and altered states of consciousness in humans. Br. J. Anaesth. 121, 249–259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carhart-Harris, R. L. The entropic brain — revisited. Neuropharmacology 142, 167–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Greyson, B. The near-death experience as a focus of clinical attention. J. Nerv. Ment. Dis. 185, 327–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Noyes, R. & Kletti, R. Depersonalization in the face of life-threatening danger: a description. Psychiatry 39, 19–27 (1976).

    Article  PubMed  Google Scholar 

  • Noyes, R. Jr & Kletti, R. Depersonalization in response to life-threatening danger. Compr. Psychiatry 18, 375–384 (1977).

    Article  PubMed  Google Scholar 

  • Chawla, L. S., Akst, S., Junker, C., Jacobs, B. & Seneff, M. G. Surges of electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12, 1095–1100 (2009).

    Article  PubMed  Google Scholar 

  • Borjigin, J. et al. Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl Acad. Sci. USA 110, 14432–14437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bland, N. S., Mattingley, J. B. & Sale, M. V. Gamma coherence mediates interhemispheric integration during multiple object tracking. J. Neurophysiol. 123, 1630–1644 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Cho, K. K. A. et al. Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning. Nat. Neurosci. 23, 892–902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, M. et al. Running speed and REM sleep control two distinct modes of rapid interhemispheric communication. Cell Rep. 40, 111028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D. E. et al. Neural correlates of consciousness at near-electrocerebral silence in an asphyxial cardiac arrest model. Brain Connect. 7, 172–181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicente, R. et al. Enhanced interplay of neuronal coherence and coupling in the dying human brain. Front. Aging Neurosci. 14, 813531 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, G. et al. Surge of neurophysiological coupling and connectivity of gamma oscillations in the dying human brain. Proc. Natl Acad. Sci. USA 120, e2216268120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth, A. K. & Bayne, T. Theories of consciousness. Nat. Rev. Neurosci. 23, 439–452 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Mena-Segovia, J., Sims, H. M., Magill, P. J. & Bolam, J. P. Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J. Physiol. 586, 2947–2960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbano, F. J. et al. Pedunculopontine nucleus gamma band activity — preconscious awareness, waking, and REM sleep. Front. Neurol. 5, 210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Llinás, R. & Ribary, U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl Acad. Sci. USA 90, 2078–2081 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  • Boly, M. et al. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittling, W., Block, A., Schweiger, E. & Genzel, S. Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cogn. 38, 17–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Ammermann, H. et al. MRI brain lesion patterns in patients in anoxia-induced vegetative state. J. Neurol. Sci. 260, 65–70 (2007).

    Article  PubMed  Google Scholar 

  • Els, T., Kassubek, J., Kubalek, R. & Klisch, J. Diffusion-weighted MRI during early global cerebral hypoxia: a predictor for clinical outcome? Acta Neurol. Scand. 110, 361–367 (2004).

    Article  PubMed  Google Scholar 

  • Holden, J. M. & Loseu, S. Shedding light on the tunnel and light in near-death experiences: a case study. J. Near Death Stud. 34, 27–43 (2015).

    Google Scholar 

  • Greyson, B. Near-death experience: clinical implications. Arch. Clin. Psychiatry 34, 116–125 (2007).

    Article  Google Scholar 

  • Chawla, L. S. et al. Characterization of end-of-life electroencephalographic surges in critically ill patients. Death Stud. 41, 385–392 (2017).

    Article  PubMed  Google Scholar 

  • Schramm, A. E. et al. Identifying neuronal correlates of dying and resuscitation in a model of reversible brain anoxia. Prog. Neurobiol. 185, 101733 (2020).

    Article  PubMed  Google Scholar 

  • Nahm, M., Greyson, B., Kelly, E. W. & Haraldsson, E. Terminal lucidity: a review and a case collection. Arch. Gerontol. Geriatr. 55, 138–142 (2012).

    Article  PubMed  Google Scholar 

  • Morse, M. L., Venecia, D. & Milstein, J. Near-death experiences: a neurophysiologic explanatory model. J. Near Death Stud. 8, 45–53 (1989).

    Article  Google Scholar 

  • Blanke, O., Landis, T., Spinelli, L. & Seeck, M. Out-of-body experience and autoscopy of neurological origin. Brain J. Neurol. 127, 243–258 (2004).

    Article  Google Scholar 

  • Blanke, O. & Metzinger, T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 7–13 (2009).

    Article  PubMed  Google Scholar 

  • Potts, M. The evidential value of near-death experiences for belief in life after death. J. Near Death Stud. 20, 233–258 (2002).

    Article  Google Scholar 

  • Schwartz, J. M., Stapp, H. P. & Beauregard, M. Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction. Philos. Trans. R. Soc. B Biol. Sci. 360, 1309–1327 (2005).

    Article  Google Scholar 

  • van Lommel, P. About the continuity of our consciousness. Adv. Exp. Med. Biol. 550, 115–132 (2004).

    Article  PubMed  Google Scholar 

  • Parnia, S. Do reports of consciousness during cardiac arrest hold the key to discovering the nature of consciousness? Med. Hypotheses 69, 933–937 (2007).

    Article  PubMed  Google Scholar 

  • Martial, C., Gosseries, O., Cassol, H. & Kondziella, D. Studying death and near-death experiences requires neuroscientific expertise. Ann. N. Y. Acad. Sci. 1517, 11–14 (2022).

    Article  PubMed  Google Scholar 

  • Vanhaudenhuyse, A., Thonnard, M. & Laureys, S. in Yearbook of Intensive Care and Emergency Medicine 2009 (ed. Vincent, J.-L.) 961–968 (2009).

  • Barker, S. A., McIlhenny, E. H. & Strassman, R. A critical review of reports of endogenous psychedelic N,N‐dimethyltryptamines in humans: 1955–2010. Drug Test. Anal. 4, 617–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Barker, S. A., Borjigin, J., Lomnicka, I. & Strassman, R. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed. Chromatogr. 27, 1690–1700 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Beaton, J. M. & Morris, P. E. Ontogeny of N,N-dimethyltryptamine and related indolealkylamine levels in neonatal rats. Mech. Ageing Dev. 25, 343–347 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Dean, J. G. et al. Biosynthesis and extracellular concentrations of N,N-dimethyltryptamine (DMT) in mammalian brain. Sci. Rep. 9, 9333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzen, F. & Gross, H. Tryptamine, N,N-dimethyltryptamine, N,N-dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine. Nature 206, 1052 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Kärkkäinen, J. et al. Potentially hallucinogenic 5‐hydroxytryptamine receptor ligands bufotenine and dimethyltryptamine in blood and tissues. Scand. J. Clin. Lab. Invest. 65, 189–199 (2005).

    Article  PubMed  Google Scholar 

  • Nichols, D. E. N. N-Dimethyltryptamine and the pineal gland: separating fact from myth. J. Psychopharmacol. 32, 30–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Glynos, N. G. et al. Neurochemical and neurophysiological effects of intravenous administration of N,N-dimethyltryptamine in rats. Preprint at bioRxiv https://doi.org/10.1101/2024.04.19.589047 (2024).

  • Bush, N. E. & Greyson, B. Distressing near-death experiences: the basics. Mol. Med. 111, 486–490 (2014).

    Google Scholar 

  • Cassol, H. et al. A systematic analysis of distressing near-death experience accounts. Memory 27, 1122–1129 (2019).

    Article  PubMed  Google Scholar 

  • Greyson, B. & Evans Bush, N. Distressing near-death experiences. Psychiatry 55, 95–110 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Ring, K. Frightening near-death experiences revisited: a commentary on responses to my paper by Christopher Bache and Nancy Evans Bush. J. Near Death Stud. 13, 55–64 (1994).

    Google Scholar 

  • Martial, C. et al. Losing the self in near-death experiences: the experience of ego-dissolution. Brain Sci. 11, 929 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrijevic, D. et al. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 608, 405–412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joffe, A. R. Should the criterion for brain death require irreversible or permanent cessation of function? Irreversible: the UDDA revision series. Neurology 101, 181–183 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Read Entire Article