An episodic burst of genomic rearrangements

4 months ago 10
  • Fernández, R. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakatani, Y. et al. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat. Commun. 12, 4489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marlétaz, F. et al. The hagfish genome and the evolution of vertebrates. Nature 627, 811–820 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, D. et al. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat. Ecol. Evol. 8, 519–535 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, C. J., Stevens, L., Mackintosh, A., Lawniczak, M. & Blaxter, M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat. Ecol. Evol. 8, 777–790 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewin, T. D. et al. Fusion, fission, and scrambling of the bilaterian genome in Bryozoa. Genome Res. 35, 78–92 (2024).

    Article  Google Scholar 

  • Albertin, C. B. et al. Genome and transcriptome mechanisms driving cephalopod evolution. Nat. Commun. 13, 2427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plessy, C. et al. Extreme genome scrambling in marine planktonic Oikopleura dioica cryptic species. Genome Res 34, 426–440 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin, T. D., Liao, I. J.-Y. & Luo, Y.-J. Annelid comparative genomics and the evolution of massive lineage-specific genome rearrangement in bilaterians. Mol. Biol. Evol. 41, msae172 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, D. T. et al. Acceleration of genome rearrangement in clitellate annelids. Preprint at bioRxiv https://doi.org/10.1101/2024.05.12.593736 (2024).

  • Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004).

    Article  PubMed  Google Scholar 

  • Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27, 937–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nakatani, Y., Takeda, H., Kohara, Y. & Morishita, S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 17, 1254–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatani, Y. & McLysaght, A. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes. Bioinformatics 33, i369–i378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erséus, C. et al. Phylogenomic analyses reveal a Palaeozoic radiation and support a freshwater origin for clitellate annelids. Zool. Scr. 49, 614–640 (2020).

    Article  Google Scholar 

  • Andrade, S. C. S. et al. Articulating ‘archiannelids’: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Mol. Biol. Evol. 32, 2860–2875 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Ly, P. & Cleveland, D. W. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 27, 917–930 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X. et al. Structure specific DNA recognition by the SLX1-SLX4 endonuclease complex. Nucleic Acids Res. 49, 7740–7752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labib, K. & Gambus, A. A key role for the GINS complex at DNA replication forks. Trends Cell Biol. 17, 271–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ortega, J., Lee, G. S., Gu, L., Yang, W. & Li, G.-M. Mispair-bound human MutS-MutL complex triggers DNA incisions and activates mismatch repair. Cell Res. 31, 542–553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-González, L. et al. 3D chromatin remodelling in the germ line modulates genome evolutionary plasticity. Nat. Commun. 13, 2608 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao, Y. et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat. Commun. 11, 2656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muldal, S. The chromosomes of the earthworms: I. the evolution of polyploidy. Heredity 6, 56–76 (1952).

    Article  Google Scholar 

  • Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Malik, H. S. & Henikoff, S. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12, 711–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kawashima, T. et al. Domain shuffling and the evolution of vertebrates. Genome Res. 19, 1393–1403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-González, L. et al. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals. Cell Rep. 41, 111839 (2022).

    Article  PubMed  Google Scholar 

  • Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Landweber, L. F., Kuo, T. C. & Curtis, E. A. Evolution and assembly of an extremely scrambled gene. Proc. Natl Acad. Sci. USA 97, 3298–3303 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchemin, L., Lanore, V., Veber, P. & Boussau, B. Evaluation of methods to detect shifts in directional selection at the genome scale. Mol. Biol. Evol. 40, msac247 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Kosakovsky et al. HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using phylogenies. Mol. Biol. Evol. 37, 295–299 (2020).

    Article  Google Scholar 

  • Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Moggioli, G. et al. Distinct genomic routes underlie transitions to specialised symbiotic lifestyles in deep-sea annelid worms. Nat. Commun. 14, 2814 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldredge, N. Time Frames: The Evolution of Punctuated Equilibria (Princeton Univ. Press, 2014).

  • Eldredge, N., & Gould, S. J. in Models in Paleobiology (ed. Schopf, T. J. M.) 82–115 (Freeman Cooper, 1972).

  • Eldredge, N. Time Frames: The Rethinking of Darwinian Evolution and the Theory of Punctuated Equilibria (Simon & Schuster, 1986).

  • Pavlíček, T. et al. Aneuploidy occurrence in Oligochaeta. Ecol. Evolut. Biol. 1, 57–63 (2016).

    Google Scholar 

  • Baker, T. M., Waise, S., Tarabichi, M. & Van Loo, P. Aneuploidy and complex genomic rearrangements in cancer evolution. Nat. Cancer 5, 228–239 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzagatti, A., Engel, J. L. & Ly, P. Boveri and beyond: chromothripsis and genomic instability from mitotic errors. Mol. Cell 84, 55–69 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Michael Ghadimi, B. & Ried, T. Chromosomal Instability in Cancer Cells (Springer, 2015).

  • Long, M., Betrán, E., Thornton, K. & Wang, W. The origin of new genes: glimpses from the young and old. Nat. Rev. Genet. 4, 865–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhang, Y.-P. & Rosenberg, H. F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat. Genet. 30, 411–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ivanković, M. et al. A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence. Nat. Commun. 15, 8215 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarailo-Graovac, M. & Chen, N. in Current Protocols in Bioinformatics Ch. 4 (2009).

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  • Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Palmer, J. & Stajich, J. nextgenusfs/funannotate: funannotate v1.5.3 (1.5.3). Zenodo https://doi.org/10.5281/zenodo.2604804 (2019).

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, B., Papanicolaou, A., Yassour, M. et al. TransDecoder. Github https://github.com/TransDecoder/TransDecoder/wiki (2017).

  • Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757–763 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabriel, L. et al. BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 51, D445–D451 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Redondo, G. I. et al. MATEdb2, a collection of high-quality metazoan proteomes across the animal tree of life to speed up phylogenomic studies. Genome Biol. Evol. 16, eva235 (2024).

    Article  Google Scholar 

  • Dainat J. Another Gtf/Gff analysis toolkit (AGAT): resolve interoperability issues and accomplish more with your annotations. Github https://github.com/NBISweden/AGAT (2022).

  • Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, D. T. et al. Ancient gene linkages support ctenophores as sister to other animals. Nature 618, 110–117 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Chávez, C. et al. Data and code for Vargas-Chávez, C. et al. 2024 (published). Zenodo https://doi.org/10.5281/zenodo.15039517 (2025).

  • Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sensalari, C., Maere, S. & Lohaus, R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 38, 530–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Zhang, T., Chen, Y., Ma, H. & Qi, J. Tree2GD: a phylogenomic method to detect large-scale gene duplication events. Bioinformatics 38, 5317–5321 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Chu, J., Cheng, H. & Li, H. De novo reconstruction of satellite repeat units from sequence data. Genome Res. 33, 1994–2001 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, M. et al. Software for computing and annotating genomic ranges. PLOS Comp. Biol. 9, e1003118 (2013).

    Article  CAS  Google Scholar 

  • Struck, T. H. Direction of evolution within Annelida and the definition of Pleistoannelida. J. Zool. Syst. Evol. Res 49, 340–345 (2011).

    Article  Google Scholar 

  • Struck, T. H. et al. The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr. Biol. 25, 1993–1999 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Weigert, A. et al. Illuminating the base of the annelid tree using transcriptomics. Mol. Biol. Evol. 31, 1391–1401 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Altenhoff, A. M. et al. OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res. 29, 1152–1163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Train, C.-M., Pignatelli, M., Altenhoff, A. & Dessimoz, C. iHam and pyHam: visualizing and processing hierarchical orthologous groups. Bioinformatics 35, 2504–2506 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic Scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Redondo, G. I., Barrios-Núñez, I., Vázquez-Valls, M., Rojas, A. M. & Fernández, R. Leveraging Natural Language Processing models to decode the dark proteome across the Animal Tree of Life. Preprint at bioRxiv https://doi.org/10.1101/2024.02.28.582465 (2024).

  • Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment analysis for gene ontology. R version 2.58.0. Bioconductor https://bioconductor.org/packages/devel/bioc/html/topGO.html (2024).

  • Wolff, J. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48, W177–W184 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidbaur, H. et al. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat. Commun. 13, 2172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pockrandt, C., Alzamel, M., Iliopoulos, C. S. & Reinert, K. GenMap: ultra-fast computation of genome mappability. Bioinformatics 36, 3687–3692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).

    Article  Google Scholar 

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).

    Article  Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulhair, P. O. et al. Bursts of novel composite gene families at major nodes in animal evolution. Preprint at bioRxiv https://doi.org/10.1101/2023.07.10.548381 (2023).

  • Pathmanathan, J. S., Lopez, P., Lapointe, F.-J. & Bapteste, E. CompositeSearch: a generalized network approach for composite gene families detection. Mol. Biol. Evol. 35, 252–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Capa, M., Aguado, M. T., & Bleidorn, C. in Fauna Ibérica. Vol. 45 (CSIC-Museo Nacional de Ciencias Naturales, 2018).

  • Fishman, V. et al. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes’ chromatin. Nucleic Acids Res. 47, 648–665 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Arzate-Mejía, R. G., Josué Cerecedo-Castillo, A., Guerrero, G., Furlan-Magaril, M. & Recillas-Targa, F. In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila. Nat. Commun. 11, 894 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Read Entire Article