Fernández, R. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).
Nakatani, Y. et al. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat. Commun. 12, 4489 (2021).
Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).
Marlétaz, F. et al. The hagfish genome and the evolution of vertebrates. Nature 627, 811–820 (2024).
Yu, D. et al. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat. Ecol. Evol. 8, 519–535 (2024).
Wright, C. J., Stevens, L., Mackintosh, A., Lawniczak, M. & Blaxter, M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat. Ecol. Evol. 8, 777–790 (2024).
Lewin, T. D. et al. Fusion, fission, and scrambling of the bilaterian genome in Bryozoa. Genome Res. 35, 78–92 (2024).
Albertin, C. B. et al. Genome and transcriptome mechanisms driving cephalopod evolution. Nat. Commun. 13, 2427 (2022).
Plessy, C. et al. Extreme genome scrambling in marine planktonic Oikopleura dioica cryptic species. Genome Res 34, 426–440 (2024).
Lewin, T. D., Liao, I. J.-Y. & Luo, Y.-J. Annelid comparative genomics and the evolution of massive lineage-specific genome rearrangement in bilaterians. Mol. Biol. Evol. 41, msae172 (2024).
Schultz, D. T. et al. Acceleration of genome rearrangement in clitellate annelids. Preprint at bioRxiv https://doi.org/10.1101/2024.05.12.593736 (2024).
Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).
Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004).
Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27, 937–945 (2005).
Nakatani, Y., Takeda, H., Kohara, Y. & Morishita, S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 17, 1254–1265 (2007).
Nakatani, Y. & McLysaght, A. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes. Bioinformatics 33, i369–i378 (2017).
Erséus, C. et al. Phylogenomic analyses reveal a Palaeozoic radiation and support a freshwater origin for clitellate annelids. Zool. Scr. 49, 614–640 (2020).
Andrade, S. C. S. et al. Articulating ‘archiannelids’: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Mol. Biol. Evol. 32, 2860–2875 (2015).
Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98 (2011).
Ly, P. & Cleveland, D. W. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 27, 917–930 (2017).
Xu, X. et al. Structure specific DNA recognition by the SLX1-SLX4 endonuclease complex. Nucleic Acids Res. 49, 7740–7752 (2021).
Labib, K. & Gambus, A. A key role for the GINS complex at DNA replication forks. Trends Cell Biol. 17, 271–278 (2007).
Ortega, J., Lee, G. S., Gu, L., Yang, W. & Li, G.-M. Mispair-bound human MutS-MutL complex triggers DNA incisions and activates mismatch repair. Cell Res. 31, 542–553 (2021).
Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).
Álvarez-González, L. et al. 3D chromatin remodelling in the germ line modulates genome evolutionary plasticity. Nat. Commun. 13, 2608 (2022).
Shao, Y. et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat. Commun. 11, 2656 (2020).
Muldal, S. The chromosomes of the earthworms: I. the evolution of polyploidy. Heredity 6, 56–76 (1952).
Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009).
Malik, H. S. & Henikoff, S. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12, 711–718 (2002).
Kawashima, T. et al. Domain shuffling and the evolution of vertebrates. Genome Res. 19, 1393–1403 (2009).
Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).
Álvarez-González, L. et al. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals. Cell Rep. 41, 111839 (2022).
Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017).
Landweber, L. F., Kuo, T. C. & Curtis, E. A. Evolution and assembly of an extremely scrambled gene. Proc. Natl Acad. Sci. USA 97, 3298–3303 (2000).
Duchemin, L., Lanore, V., Veber, P. & Boussau, B. Evaluation of methods to detect shifts in directional selection at the genome scale. Mol. Biol. Evol. 40, msac247 (2023).
Kosakovsky et al. HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using phylogenies. Mol. Biol. Evol. 37, 295–299 (2020).
Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).
Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).
Moggioli, G. et al. Distinct genomic routes underlie transitions to specialised symbiotic lifestyles in deep-sea annelid worms. Nat. Commun. 14, 2814 (2023).
Eldredge, N. Time Frames: The Evolution of Punctuated Equilibria (Princeton Univ. Press, 2014).
Eldredge, N., & Gould, S. J. in Models in Paleobiology (ed. Schopf, T. J. M.) 82–115 (Freeman Cooper, 1972).
Eldredge, N. Time Frames: The Rethinking of Darwinian Evolution and the Theory of Punctuated Equilibria (Simon & Schuster, 1986).
Pavlíček, T. et al. Aneuploidy occurrence in Oligochaeta. Ecol. Evolut. Biol. 1, 57–63 (2016).
Baker, T. M., Waise, S., Tarabichi, M. & Van Loo, P. Aneuploidy and complex genomic rearrangements in cancer evolution. Nat. Cancer 5, 228–239 (2024).
Mazzagatti, A., Engel, J. L. & Ly, P. Boveri and beyond: chromothripsis and genomic instability from mitotic errors. Mol. Cell 84, 55–69 (2024).
Michael Ghadimi, B. & Ried, T. Chromosomal Instability in Cancer Cells (Springer, 2015).
Long, M., Betrán, E., Thornton, K. & Wang, W. The origin of new genes: glimpses from the young and old. Nat. Rev. Genet. 4, 865–875 (2003).
Zhang, J., Zhang, Y.-P. & Rosenberg, H. F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat. Genet. 30, 411–415 (2002).
Ivanković, M. et al. A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence. Nat. Commun. 15, 8215 (2024).
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).
Tarailo-Graovac, M. & Chen, N. in Current Protocols in Bioinformatics Ch. 4 (2009).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Palmer, J. & Stajich, J. nextgenusfs/funannotate: funannotate v1.5.3 (1.5.3). Zenodo https://doi.org/10.5281/zenodo.2604804 (2019).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
Haas, B., Papanicolaou, A., Yassour, M. et al. TransDecoder. Github https://github.com/TransDecoder/TransDecoder/wiki (2017).
Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757–763 (2011).
Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
Gabriel, L. et al. BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).
Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 51, D445–D451 (2023).
Martínez-Redondo, G. I. et al. MATEdb2, a collection of high-quality metazoan proteomes across the animal tree of life to speed up phylogenomic studies. Genome Biol. Evol. 16, eva235 (2024).
Dainat J. Another Gtf/Gff analysis toolkit (AGAT): resolve interoperability issues and accomplish more with your annotations. Github https://github.com/NBISweden/AGAT (2022).
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
Schultz, D. T. et al. Ancient gene linkages support ctenophores as sister to other animals. Nature 618, 110–117 (2023).
Vargas-Chávez, C. et al. Data and code for Vargas-Chávez, C. et al. 2024 (published). Zenodo https://doi.org/10.5281/zenodo.15039517 (2025).
Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).
Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).
Sensalari, C., Maere, S. & Lohaus, R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 38, 530–532 (2022).
Chen, D., Zhang, T., Chen, Y., Ma, H. & Qi, J. Tree2GD: a phylogenomic method to detect large-scale gene duplication events. Bioinformatics 38, 5317–5321 (2022).
Zhang, Y., Chu, J., Cheng, H. & Li, H. De novo reconstruction of satellite repeat units from sequence data. Genome Res. 33, 1994–2001 (2023).
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLOS Comp. Biol. 9, e1003118 (2013).
Struck, T. H. Direction of evolution within Annelida and the definition of Pleistoannelida. J. Zool. Syst. Evol. Res 49, 340–345 (2011).
Struck, T. H. et al. The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr. Biol. 25, 1993–1999 (2015).
Weigert, A. et al. Illuminating the base of the annelid tree using transcriptomics. Mol. Biol. Evol. 31, 1391–1401 (2014).
Altenhoff, A. M. et al. OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res. 29, 1152–1163 (2019).
Train, C.-M., Pignatelli, M., Altenhoff, A. & Dessimoz, C. iHam and pyHam: visualizing and processing hierarchical orthologous groups. Bioinformatics 35, 2504–2506 (2019).
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic Scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
Martínez-Redondo, G. I., Barrios-Núñez, I., Vázquez-Valls, M., Rojas, A. M. & Fernández, R. Leveraging Natural Language Processing models to decode the dark proteome across the Animal Tree of Life. Preprint at bioRxiv https://doi.org/10.1101/2024.02.28.582465 (2024).
Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment analysis for gene ontology. R version 2.58.0. Bioconductor https://bioconductor.org/packages/devel/bioc/html/topGO.html (2024).
Wolff, J. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48, W177–W184 (2020).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).
Schmidbaur, H. et al. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat. Commun. 13, 2172 (2022).
Pockrandt, C., Alzamel, M., Iliopoulos, C. S. & Reinert, K. GenMap: ultra-fast computation of genome mappability. Bioinformatics 36, 3687–3692 (2020).
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).
Mulhair, P. O. et al. Bursts of novel composite gene families at major nodes in animal evolution. Preprint at bioRxiv https://doi.org/10.1101/2023.07.10.548381 (2023).
Pathmanathan, J. S., Lopez, P., Lapointe, F.-J. & Bapteste, E. CompositeSearch: a generalized network approach for composite gene families detection. Mol. Biol. Evol. 35, 252–255 (2018).
Capa, M., Aguado, M. T., & Bleidorn, C. in Fauna Ibérica. Vol. 45 (CSIC-Museo Nacional de Ciencias Naturales, 2018).
Fishman, V. et al. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes’ chromatin. Nucleic Acids Res. 47, 648–665 (2019).
Arzate-Mejía, R. G., Josué Cerecedo-Castillo, A., Guerrero, G., Furlan-Magaril, M. & Recillas-Targa, F. In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila. Nat. Commun. 11, 894 (2020).
.png)

![PrintScreen: Fabricating Highly Customizable Thin-Film Touch-Displays (2014) [video]](https://www.youtube.com/img/desktop/supported_browsers/firefox.png)
