Asgard archaea illuminate the origin of eukaryotic cellular complexity (2017)

2 hours ago 3
  • Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  • López-García, P. & Moreira, D. Open questions on the origin of eukaryotes. Trends Ecol. Evol. 30, 697–708 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Koonin, E. V. Origin of eukaryotes from within Archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Phil. Trans. R. Soc. Lond. B 370, 20140333 (2015)

    Article  CAS  Google Scholar 

  • Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. Lond. B 370, 20140330 (2015)

    Article  CAS  Google Scholar 

  • Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy, L. & Ettema, T. J. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12, 449–455 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Williams, T. A., Foster, P. G., Nye, T. M., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. R. Soc. Lond. B 279, 4870–4879 (2012)

    CAS  Google Scholar 

  • Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Spang, A. et al. Complex Archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA 99, 1420–1425 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinger, C. M., Spang, A., Dacks, J. B. & Ettema, T. J. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33, 1528–1541 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Surkont, J. & Pereira-Leal, J. B. Are there Rab GTPases in Archaea? Mol. Biol. Evol. 33, 1833–1842 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey, G., Thattai, M. & Baum, B. On the archaeal origins of eukaryotes and the challenges of inferring phenotype from genotype. Trends Cell Biol. 26, 476–485 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin, E. V. Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol. 13, 84 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Martin, W. F., Neukirchen, S., Zimorski, V., Gould, S. B. & Sousa, F. L. Energy for two: new archaeal lineages and the origin of mitochondria. BioEssays 38, 850–856 (2016)

    Article  PubMed  Google Scholar 

  • Villanueva, L., Schouten, S. & Damsté, J. S. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the ‘lipid divide’. Environ. Microbiol. (2016)

  • Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Mariotti, M. et al. Lokiarchaeota marks the transition between the archaeal and eukaryotic selenocysteine encoding systems. Mol. Biol. Evol. 33, 2441–2453 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai, K. & Horikoshi, K. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yutin, N. & Koonin, E. V. Archaeal origin of tubulin. Biol. Direct 7, 10 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahirov, T. H., Makarova, K. S., Rogozin, I. B., Pavlov, Y. I. & Koonin, E. V. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct 4, 11 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sacher, M., Kim, Y. G., Lavie, A., Oh, B. H. & Segev, N. The TRAPP complex: insights into its architecture and function. Traffic 9, 2032–2042 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podar, M., Wall, M. A., Makarova, K. S. & Koonin, E. V. The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system. Biol. Direct 3, 2 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994)

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 24, 525–534 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fournier, D. et al. Functional and genomic analyses of alpha-solenoid proteins. PLoS One 8, e79894 (2013)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Field, M. C., Sali, A. & Rout, M. P. Evolution: on a bender–BARs, ESCRTs, COPs, and finally getting your coat. J. Cell Biol. 193, 963–972 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlacht, A. & Dacks, J. B. Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol. Evol. 7, 1098–1109 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dacks, J. B. & Field, M. C. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120, 2977–2985 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Ku, C. et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427–432 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettema, T. J. Evolution: mitochondria in the second act. Nature 531, 39–40 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Koonin, E. V. & Yutin, N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb. Perspect. Biol. 6, a016188 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shively, J. M. in Complex Intracellular Structures in Prokaryotes (ed. Jessup M. Shively ) 3–22 (Springer Berlin Heidelberg, 2006)

  • Küper, U., Meyer, C., Müller, V., Rachel, R. & Huber, H. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic archaeon Ignicoccus hospitalis. Proc. Natl Acad. Sci. USA 107, 3152–3156 (2010)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Klingl, A. S-layer and cytoplasmic membrane—exceptions from the typical archaeal cell wall with a focus on double membranes. Front. Microbiol. 5, 624 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martijn, J. & Ettema, T. J. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 6, a015990 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Saw, J. H. et al. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Phil. Trans. R. Soc. Lond. B 370, 20140328 (2015)

    Article  Google Scholar 

  • Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Castelle, C. J. et al. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Hirayama, H. et al. Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ. Microbiol. 73, 7642–7656 (2007)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lever, M. A. et al. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front. Microbiol. 6, 476 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Brady, A. & Salzberg, S. L. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat. Methods 6, 673–676 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markowitz, V. M. et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–D122 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life 5, 818–840 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44 (D1), D279–D285 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D257–D260 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W228 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols 10, 845–858 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy, L., Saw, J. H. & Ettema, T. J. The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016022 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yutin, N., Puigbò, P., Koonin, E. V. & Wolf, Y. I. Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7, e36972 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Viklund, J., Ettema, T. J. & Andersson, S. G. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol. Biol. Evol. 29, 599–615 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Makarova, K. S., Krupovic, M. & Koonin, E. V. Evolution of replicative DNA polymerases in Archaea and their contributions to the eukaryotic replication machinery. Front. Microbiol. 5, 354 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Read Entire Article