Astroimmunology: The effects of spaceflight and its stressors on the immunity

2 weeks ago 2
  • Crucian, B. et al. Alterations in adaptive immunity persist during long-duration spaceflight. npj Microgravity 1, 15013 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Konstantinova, I. V., Rykova, M. P., Lesnyak, A. T. & Antropova, E. A. Immune changes during long-duration missions. J. Leukoc. Biol. 54, 189–201 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Mehta, S. K. et al. Multiple latent viruses reactivate in astronauts during space shuttle missions. Brain Behav. Immun. 41, 210–217 (2014).

    Article  PubMed  CAS  Google Scholar 

  • Mehta, S. K. et al. Latent virus reactivation in astronauts on the International Space Station. npj Microgravity 3, 11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R. & Pierson, D. L. Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345–361 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason, C. E. et al. A second space age spanning omics, platforms and medicine across orbits. Nature 632, 995–1008 (2024). The ‘second space age’ is driving the integration of cutting-edge molecular biology and precision medicine into aerospace health care, fundamentally transforming astronaut well-being for extended missions, especially through comprehensive data collection and biobanking efforts such as the SOMA.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L. & Mehta, S. K. Herpes virus reactivation in astronauts during spaceflight and its application on earth. Front. Microbiol. 10, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Crucian, B. et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J. Clin. Immunol. 33, 456–465 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Crucian, B. et al. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med. 9, 383–391 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Penley, N. J., Schafer, C. P. & Bartoe, J.-D. F. The International Space Station as a microgravity research platform. Acta Astronaut. 50, 691–696 (2002).

    Article  PubMed  Google Scholar 

  • Lv, H. et al. Microgravity and immune cells. J. R. Soc. Interface 20, 20220869 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonanni, R., Cariati, I., Marini, M., Tarantino, U. & Tancredi, V. Microgravity and musculoskeletal health: what strategies should be used for a great challenge? Life 13, 1423 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, E. S., Mulugeta, L. & Myers, J. G. Microgravity-induced fluid shift and ophthalmic changes. Life 4, 621–665 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez, E. M., Yoshida, M. C., Candelario, T. L. T. & Hughes-Fulford, M. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R480–R488 (2015). An early study comparing the effects of simulated microgravity with true microgravity in spaceflight on T cell gene expression post-activation, demonstrating reduced T cell activation by microgravity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang, T. T., Spurlock, S. M., Candelario, T. L. T., Grenon, S. M. & Hughes-Fulford, M. Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines. FASEB J. 29, 4122–4132 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hicks, J., Olson, M., Mitchell, C., Juran, C. M. & Paul, A. M. The impact of microgravity on immunological states. Immunohorizons 7, 670–682 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li, Q. et al. Effects of simulated microgravity on primary human NK cells. Astrobiology 13, 703–714 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bigley, A. B. et al. NK cell function is impaired during long-duration spaceflight. J. Appl. Physiol. 126, 842–853 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman, B. M. et al. Simulated microgravity impairs human NK cell cytotoxic activity against space radiation-relevant leukemic cells. npj Microgravity 10, 85 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiel, C. S. et al. Rapid adaptation to microgravity in mammalian macrophage cells. Sci. Rep. 7, 43 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, L. et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell. Mol. Immunol. 18, 1489–1502 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Savary, C. A. et al. Characteristics of human dendritic cells generated in a microgravity analog culture system. In Vitr. Cell Dev. Biol. Anim. 37, 216–222 (2001).

    Article  CAS  Google Scholar 

  • Kaur, I., Simons, E. R., Castro, V. A., Mark Ott, C. & Pierson, D. L. Changes in neutrophil functions in astronauts. Brain Behav. Immun. 18, 443–450 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Paul, A. M. et al. Neutrophil-to-lymphocyte ratio: a biomarker to monitor the immune status of astronauts. Front. Immunol. 11, 564950 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacob, P., Bonnefoy, J., Ghislin, S. & Frippiat, J.-P. Long-duration head-down tilt bed rest confirms the relevance of the neutrophil to lymphocyte ratio and suggests coupling it with the platelet to lymphocyte ratio to monitor the immune health of astronauts. Front. Immunol. 13, 952928 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai, S. et al. Effect of simulated microgravity conditions of hindlimb unloading on mice hematopoietic and mesenchymal stromal cells. Cell Biol. Int. 44, 2243–2252 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ezura, Y. et al. Hindlimb-unloading suppresses B cell population in the bone marrow and peripheral circulation associated with OPN expression in circulating blood cells. J. Bone Miner. Metab. 33, 48–54 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y. et al. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS ONE 7, e44329 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, J. et al. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. FASEB J. 31, 3695–3709 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Davis, T. A. et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J. Leukoc. Biol. 60, 69–76 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Trudel, G., Melkus, G. & Liu, T. The ups and downs of bone-marrow adipose tissue in space. Trends Endocrinol. Metab. 35, 85–87 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, T. et al. How does spaceflight affect the acquired immune system? npj Microgravity 6, 14 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woods, C. C., Banks, K. E., Gruener, R. & DeLuca, D. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity. FASEB J. 17, 1526–1528 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu, W., Maryanovich, M., Akiyama, T. & Karagiannis, G. S. Thymus ad astra, or spaceflight-induced thymic involution. Front. Immunol. 15, 1534444 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Luo, H., Wang, C., Feng, M. & Zhao, Y. Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int. J. Med. Sci. 11, 87–96 (2014).

    Article  PubMed  Google Scholar 

  • Hashemi, B. B. et al. T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J. 13, 2071–2082 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Tauber, S. et al. Signal transduction in primary human T lymphocytes in altered gravity — results of the MASER-12 suborbital space flight mission. Cell Commun. Signal. 11, 32 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tauber, S. et al. Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments. Cell. Physiol. Biochem. 35, 1034–1051 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Spatz, J. M. et al. Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Sci. Rep. 11, 11872 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spielmann, G. et al. B cell homeostasis is maintained during long-duration spaceflight. J. Appl. Physiol. 126, 469–476 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Gaignier, F. et al. Three weeks of murine hindlimb unloading induces shifts from B to T and from Th to Tc splenic lymphocytes in absence of stress and differentially reduces cell-specific mitogenic responses. PLoS ONE 9, e92664 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, J. M. et al. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells. Adv. Space Res. 49, 237–248 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Wei, L. X., Zhou, J. N., Roberts, A. I. & Shi, Y. F. Lymphocyte reduction induced by hindlimb unloading: distinct mechanisms in the spleen and thymus. Cell Res. 13, 465–471 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cao, D. et al. Hematopoietic stem cells and lineage cells undergo dynamic alterations under microgravity and recovery conditions. FASEB J. 33, 6904–6918 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Lescale, C. et al. Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging. FASEB J. 29, 455–463 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Wu, F. et al. Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight. Nat. Commun. 15, 4795 (2024). The first single-cell analysis of the human immune system from simulated microgravity with validation to spaceflight data, including the SpaceX Inspiration4 mission, NASA Twins and JAXA cell-free epigenome study, identifies core hallmarks of immune dysfunction in microgravity and spaceflight. This paper also used machine learning to identify nutritional countermeasures to reverse the effects of microgravity on immune cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020). The first large multiomics assessment across multiple astronauts, different tissue types and multiple modelled systems identifies key alterations in organism biology, including mitochondrial dysfunction, induced by spaceflight.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murali, A. & Sarkar, R. R. Mechano-immunology in microgravity. Life Sci. Space Res. 37, 50–64 (2023).

    Google Scholar 

  • Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Neelam, S. et al. Changes in nuclear shape and gene expression in response to simulated microgravity are LINC complex-dependent. Int. J. Mol. Sci. 21, 6762 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiel, C. S. et al. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci. Rep. 8, 13267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vahlensieck, C., Thiel, C. S., Zhang, Y., Huge, A. & Ullrich, O. Gravitational force-induced 3D chromosomal conformational changes are associated with rapid transcriptional response in human T cells. Int. J. Mol. Sci. 22, 9426 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sciola, L., Cogoli-Greuter, M., Cogoli, A., Spano, A. & Pippia, P. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv. Space Res. 24, 801–805 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Papaseit, C., Pochon, N. & Tabony, J. Microtubule self-organization is gravity-dependent. Proc. Natl Acad. Sci. USA 97, 8364–8368 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schatten, H., Lewis, M. L. & Chakrabarti, A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut. 49, 399–418 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Trono, P., Tocci, A., Musella, M., Sistigu, A. & Nisticò, P. Actin cytoskeleton dynamics and type I IFN-mediated immune response: a dangerous liaison in cancer? Biology 10, 913 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Masri, R. & Delon, J. RHO GTPases: from new partners to complex immune syndromes. Nat. Rev. Immunol. 21, 499–513 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. et al. RhoB induces the production of proinflammatory cytokines in TLR-triggered macrophages. Mol. Immunol. 87, 200–206 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Ohman, T., Rintahaka, J., Kalkkinen, N., Matikainen, S. & Nyman, T. A. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza a virus infection of human primary macrophages. J. Immunol. 182, 5682–5692 (2009).

    Article  PubMed  Google Scholar 

  • Mukherjee, A. et al. Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions. J. Biol. Chem. 284, 6486–6494 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, L. et al. Attenuation of antiviral immune response caused by perturbation of TRIM25-mediated RIG-I activation under simulated microgravity. Cell Rep. 34, 108600 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Guignandon, A. et al. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 28, 4077–4087 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Husna, N. et al. Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment response. Nat. Commun. 15, 4814 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatton, J. P., Gaubert, F., Cazenave, J.-P. & Schmitt, D. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J. Cell. Biochem. 87, 39–50 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Larsson, C. Protein kinase C and the regulation of the actin cytoskeleton. Cell. Signal. 18, 276–284 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Hui, X., Sauer, B., Kaestner, L., Kruse, K. & Lipp, P. PKCα diffusion and translocation are independent of an intact cytoskeleton. Sci. Rep. 7, 475 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrett-Bakelman, F. E. et al. The NASA Twins study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019). Analysing a 340-day space mission on a twin astronaut, the NASA Twins Study revealed extensive integrated, longitudinal physiological and molecular changes of the effects of spaceflight on a human subject.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).

    Article  PubMed  Google Scholar 

  • Zhao, T. V., Sato, Y., Goronzy, J. J. & Weyand, C. M. T-cell aging-associated phenotypes in autoimmune disease. Front. Aging 3, 867950 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Locatelli, L., Cazzaniga, A., De Palma, C., Castiglioni, S. & Maier, J. A. M. Mitophagy contributes to endothelial adaptation to simulated microgravity. FASEB J. 34, 1833–1845 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, H. P., Tran, P. H., Kim, K.-S. & Yang, S.-G. The effects of real and simulated microgravity on cellular mitochondrial function. npj Microgravity 7, 44 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tauber, S. et al. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 12, e0175599 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Prado, L. G., Camara, N. O. S. & Barbosa, A. S. Cell lipid biology in infections: an overview. Front. Cell. Infect. Microbiol. 13, 1148383 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain, N. & Vogel, V. Spatial confinement downsizes the inflammatory response of macrophages. Nat. Mater. 17, 1134–1144 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, J. et al. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nat. Commun. 15, 4954 (2024). This study categorized the immune response changes of four SpaceX Inspiration4 mission crewmembers using single-cell multiomics analysis, revealing spaceflight-induced alterations in gene expression, chromatin accessibility and immune cell proportions. It further identified a conserved spaceflight signature showing dysregulation in oxidative phosphorylation, translation, UV response and TCF21 pathways.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wernlé, K., Thiel, C. S. & Ullrich, O. Increased H3K9me3 and F-actin reorganization in the rapid adaptive response to hypergravity in human T lymphocytes. Int. J. Mol. Sci. 24, 17232 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vahlensieck, C. et al. Post-transcriptional dynamics is involved in rapid adaptation to hypergravity in jurkat T cells. Front. Cell Dev. Biol. 10, 933984 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang, A. et al. Acute and short-term fluctuations in gravity are associated with changes in circulatory plasma protein levels. npj Microgravity 10, 25 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghislin, S., Ouzren-Zarhloul, N., Kaminski, S. & Frippiat, J.-P. Hypergravity exposure during gestation modifies the TCRβ repertoire of newborn mice. Sci. Rep. 5, 9318 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guéguinou, N. et al. Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology 37, 137–147 (2012).

    Article  PubMed  Google Scholar 

  • Moser, D. et al. Differential effects of hypergravity on immune dysfunctions induced by simulated microgravity. FASEB J. 37, e22910 (2023).

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. T. et al. NASA GeneLab platform utilized for biological response to space radiation in animal models. Cancers 12, 381 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul, A. M. et al. Beyond low-Earth orbit: characterizing immune and microRNA differentials following simulated deep spaceflight conditions in mice. iScience 23, 101747 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burke, M. et al. Sexual dimorphism during integrative endocrine and immune responses to ionizing radiation in mice. Sci. Rep. 14, 7334 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rienecker, K. D. A. et al. Combined space stressors induce independent behavioral deficits predicted by early peripheral blood monocytes. Sci. Rep. 13, 1749 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanzari, J. K., Cengel, K. A., Wan, X. S., Rusek, A. & Kennedy, A. R. Acute hematological effects in mice exposed to the expected doses, dose-rates, and energies of solar particle event-like proton radiation. Life Sci. Space Res. 2, 86–91 (2014).

    Google Scholar 

  • Gridley, D. S., Obenaus, A., Bateman, T. A. & Pecaut, M. J. Long-term changes in rat hematopoietic and other physiological systems after high-energy iron ion irradiation. Int. J. Radiat. Biol. 84, 549–559 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Gridley, D. S., Pecaut, M. J., Dutta-Roy, R. & Nelson, G. A. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I. Immunol. Lett. 80, 55–66 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Gridley, D. S., Pecaut, M. J. & Nelson, G. A. Total-body irradiation with high-LET particles: acute and chronic effects on the immune system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R677–R688 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Pecaut, M. J. et al. Acute effects of iron-particle radiation on immunity. Part I: population distributions. Radiat. Res. 165, 68–77 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Gridley, D. S. et al. Low-dose photon and simulated solar particle event proton effects on Foxp3+ T regulatory cells and other leukocytes. Technol. Cancer Res. Treat. 9, 637–649 (2010).

    Article  PubMed  Google Scholar 

  • Dang, B. et al. Simulated microgravity increases heavy ion radiation-induced apoptosis in human B lymphoblasts. Life Sci. 97, 123–128 (2014).

    Article  PubMed  CAS  Google Scholar 

  • Gridley, D. S. et al. Spaceflight effects on T lymphocyte distribution, function and gene expression. J. Appl. Physiol. 106, 194–202 (2009).

    Article  PubMed  Google Scholar 

  • Crucian, B. E. et al. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9, 1437 (2018). Human immune dysfunction and latent herpesvirus reactivation are frequently observed during orbital spaceflight. This review discusses existing and potential countermeasures, including nutritional, pharmacological and vaccination strategies, to mitigate clinical risks and leverage precision medicine for protecting astronaut health during future long-duration and deep space exploration missions.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nzabarushimana, E. et al. Combined exposure to protons and 56Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. Life Sci. Space Res. 7, 1–8 (2015).

    Google Scholar 

  • Rodman, C. et al. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia 31, 1398–1407 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Villanueva, M., Wong, M., Lu, T., Zhang, Y. & Wu, H. Interplay of space radiation and microgravity in DNA damage and DNA damage response. npj Microgravity 3, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Beheshti, A. et al. Genomic changes driven by radiation-induced DNA damage and microgravity in human cells. Int. J. Mol. Sci. 22, 10507 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pariset, E. et al. DNA damage baseline predicts resilience to space radiation and radiotherapy. Cell Rep. 33, 108434 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feiveson, A. et al. Predicting chromosome damage in astronauts participating in International Space Station missions. Sci. Rep. 11, 5293 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heylmann, D., Ponath, V., Kindler, T. & Kaina, B. Comparison of DNA repair and radiosensitivity of different blood cell populations. Sci. Rep. 11, 2478 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Limoli, C. L., Ponnaiya, B., Corcoran, J. J., Giedzinski, E. & Morgan, W. F. Chromosomal instability induced by heavy ion irradiation. Int. J. Radiat. Biol. 76, 1599–1606 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ding, L.-H. et al. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy. BMC Genomics 14, 372 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidane, D. et al. Interplay between DNA repair and inflammation, and the link to cancer. Crit. Rev. Biochem. Mol. Biol. 49, 116–139 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cucinotta, F. A. & Cacao, E. Non-targeted effects models predict significantly higher Mars mission cancer risk than targeted effects models. Sci. Rep. 7, 1832 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda, H. et al. Expression profile of cell cycle-related genes in human fibroblasts exposed simultaneously to radiation and simulated microgravity. Int. J. Mol. Sci. 20, 4791 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stowe, R. P., Sams, C. F. & Pierson, D. L. Effects of mission duration on neuroimmune responses in astronauts. Aviat. Space Environ. Med. 74, 1281–1284 (2003).

    PubMed  Google Scholar 

  • Reale, M. et al. Network between cytokines, cortisol and occupational stress in gas and oilfield workers. Int. J. Mol. Sci. 21, 1118 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur, I., Simons, E. R., Kapadia, A. S., Ott, C. M. & Pierson, D. L. Effect of spaceflight on ability of monocytes to respond to endotoxins of Gram-negative bacteria. Clin. Vaccin. Immunol. 15, 1523–1528 (2008).

    Article  CAS  Google Scholar 

  • Crucian, B. E. et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J. Interferon Cytokine Res. 34, 778–786 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benjamin, C. L. et al. Decreases in thymopoiesis of astronauts returning from space flight. JCI Insight 1, e88787 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckberg, D. L. & Neurolab Autonomic Nervous System Team. Bursting into space: alterations of sympathetic control by space travel. Acta Physiol. Scand. 177, 299–311 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Carnagarin, R., Matthews, V., Zaldivia, M. T. K., Peter, K. & Schlaich, M. P. The bidirectional interaction between the sympathetic nervous system and immune mechanisms in the pathogenesis of hypertension. Br. J. Pharmacol. 176, 1839–1852 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Bellocchi, C. et al. The interplay between autonomic nervous system and inflammation across systemic autoimmune diseases. Int. J. Mol. Sci. 23, 2449 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miranda, S. et al. Lost in space? Unmasking the T cell reaction to simulated space stressors. Int. J. Mol. Sci. 24, 16943 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malatesta, P. et al. Differential gene expression in human fibroblasts simultaneously exposed to ionizing radiation and simulated microgravity. Biomolecules 14, 88 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, A., Moreno-Villanueva, M., Crucian, B. & Wu, H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun. Ageing 21, 50 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Malkani, S. et al. Circulating miRNA spaceflight signature reveals targets for countermeasure development. Cell Rep. 33, 108448 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nickerson, C. A. et al. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol. Mol. Biol. Rev. 88, e0014423 (2024).

    Article  PubMed  Google Scholar 

  • Guo, H. et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 370, eaay9097 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moraitis, I., Guiu, J. & Rubert, J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol. Metab. 34, 489–501 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Hills, R. D. et al. Gut microbiome: profound implications for diet and disease. Nutrients 11, 1613 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, J. et al. Navigating mental health in space: gut–brain axis and microbiome dynamics. Exp. Mol. Med. 57, 1152–1163 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrison, M. D. et al. Investigation of spaceflight induced changes to astronaut microbiomes. Front. Microbiol. 12, 659179 (2021). This study used shotgun metagenomic sequencing and microarrays on multisite body samples from four ISS astronauts to reveal individual-specific microbiome shifts and a notable post-flight increase in antimicrobial resistance genes, demonstrating these technologies’ utility for space microbiome monitoring.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorhies, A. A. et al. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci. Rep. 9, 9911 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Malli Mohan, G. B. et al. Microbiome and metagenome analyses of a closed habitat during human occupation. mSystems 5, e00367–20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Checinska Sielaff, A. et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Salido, R. A. et al. The International Space Station has a unique and extreme microbial and chemical environment driven by use patterns. Cell 188, 2022–2041.e23 (2025). A comprehensive mapping of microbial composition on numerous surfaces of the US Orbital Segment of the ISS identifies key microbial changes linked to ISS modulate function and the effects of chemicals, with implications to immunity.

    Article  PubMed  CAS  Google Scholar 

  • Avila-Herrera, A. et al. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS ONE 15, e0231838 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tierney, B. T. et al. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat. Microbiol. 9, 1661–1675 (2024). Results from the Inspiration4 mission utilizing extensive mapping of microbial changes with relation to predicted effects on immunity across different body sites in response to short-duration spaceflight.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Z. et al. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 11, 807–819 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, P., Green, S. J., Chlipala, G. E., Turek, F. W. & Vitaterna, M. H. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 7, 113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Trudel, G., Shahin, N., Ramsay, T., Laneuville, O. & Louati, H. Hemolysis contributes to anemia during long-duration space flight. Nat. Med. 28, 59–62 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehta, S. K., Stowe, R. P., Feiveson, A. H., Tyring, S. K. & Pierson, D. L. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J. Infect. Dis. 182, 1761–1764 (2000). This study reported early evidence that cytomegalovirus reactivation and shedding occurred in 71 astronauts both before and during spaceflight, shown by significantly increased shedding frequency in urine and increased antibody titres.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, S. K. et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 61, 205–209 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Mehta, S. K. et al. Dermatitis during spaceflight associated with HSV-1 reactivation. Viruses 14, 789 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierson, D. L., Stowe, R. P., Phillips, T. M., Lugg, D. J. & Mehta, S. K. Epstein–Barr virus shedding by astronauts during space flight. Brain Behav. Immun. 19, 235–242 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Mehta, S. K. & Pierson, D. L. Reactivation of latent herpes viruses in cosmonauts during a Soyuz taxi mission. Microgravity Sci. Technol. 19, 215–218 (2007).

    Article  CAS  Google Scholar 

  • Crucian, B. E. et al. Countermeasures-based improvements in stress, immune system dysregulation and latent herpesvirus reactivation onboard the International Space Station — relevance for deep space missions and terrestrial medicine. Neurosci. Biobehav. Rev. 115, 68–76 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Spielmann, G. et al. Latent viral reactivation is associated with changes in plasma antimicrobial protein concentrations during long-duration spaceflight. Acta Astronaut. 146, 111–116 (2018).

    Article  CAS  Google Scholar 

  • Kunz, H. E. et al. Zoster patients on earth and astronauts in space share similar immunologic profiles. Life Sci. Space Res. 25, 119–128 (2020).

    Google Scholar 

  • Urbaniak, C. et al. The influence of spaceflight on the astronaut salivary microbiome and the search for a microbiome biomarker for viral reactivation. Microbiome 8, 56 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tibbetts, S. A., van Dyk, L. F., Speck, S. H. & Virgin, H. W. Immune control of the number and reactivation phenotype of cells latently infected with a gammaherpesvirus. J. Virol. 76, 7125–7132 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasser, O. et al. Treatment-dependent loss of polyfunctional CD8+  T-cell responses in HIV-infected kidney transplant recipients is associated with herpesvirus reactivation. Am. J. Transplant. 9, 794–803 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crucian, B. E., Stowe, R. P., Pierson, D. L. & Sams, C. F. Immune system dysregulation following short- vs long-duration spaceflight. Aviat. Space Environ. Med. 79, 835–843 (2008).

    Article  PubMed  Google Scholar 

  • Mehta, S. K. et al. Reactivation of latent Epstein–Barr virus: a comparison after exposure to gamma, proton, carbon, and iron radiation. Int. J. Mol. Sci. 19, 2961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tascher, G. et al. Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth. FASEB J. 33, 3772–3783 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Guéguinou, N. et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J. Leukoc. Biol. 86, 1027–1038 (2009).

    Article  PubMed  Google Scholar 

  • Crucian, B., Stowe, R., Quiriarte, H., Pierson, D. & Sams, C. Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat. Space Environ. Med. 82, 857–862 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Tsai, S. et al. Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. Cell Metab. 28, 922–934.e4 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Jacob, P. et al. Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity. npj Microgravity 9, 51 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, T. T. et al. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J. Leukoc. Biol. 92, 1133–1145 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchheim, J.-I. et al. Plasticity of the human IgM repertoire in response to long-term spaceflight. FASEB J. 34, 16144–16162 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Stratis, D., Trudel, G., Rocheleau, L., Pelchat, M. & Laneuville, O. The transcriptome response of astronaut leukocytes to long missions aboard the International Space Station reveals immune modulation. Front. Immunol. 14, 1171103 (2023). A comprehensive bulk transcriptomic analysis of PBMCs from 14 astronauts over a period of 6 months identifies DEGs altered by spaceflight, including pathways linked to lymphocyte activation, immune cell proliferation, cell adhesion, migration, wound response and GPCR signalling, as well as changes in long-non-coding RNAs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mucka, P. et al. CLK2 and CLK4 are regulators of DNA damage-induced NF-κB targeted by novel small molecule inhibitors. Cell Chem. Biol. 30, 1303–1312.e3 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Villanueva, M. et al. Transcriptomics analysis reveals potential mechanisms underlying mitochondrial dysfunction and T cell exhaustion in astronauts’ blood cells in space. Front. Immunol. 15, 1512578 (2024). A large-scale bulk transcriptomic analysis of PBMCs from 11 astronauts at 135–201 days on board the ISS identifies key pathways and mechanisms imparted by spaceflight to alter immunity. Some of these include changes to mitochondria, sirtuin signalling, cytokines, mechanobiology and calcium-related processes and autophagy.

    Article  PubMed  CAS  Google Scholar 

  • Overbey, E. G. et al. The Space Omics and Medical Atlas (SOMA) and international astronaut biobank. Nature 632, 1145–1154 (2024). SOMA is a pivotal database and biobanking resource providing comprehensive physiological profiles and multiomics datasets from a range of space missions to accelerate biomedical understanding and the development of critical countermeasures for the challenges of long-duration space travel.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, H., He, R., Yang, X., Huang, B. & Liu, H. Mechanism of TCF21 downregulation leading to immunosuppression of tumor-associated macrophages in non-small cell lung cancer. Pharmaceutics 15, 2295 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, J. et al. Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight. Nat. Commun. 15, 4773 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kieffer, S. R. & Lowndes, N. F. Immediate-early, early, and late responses to DNA double stranded breaks. Front. Genet. 13, 793884 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray, D., Mirzayans, R. & McBride, W. H. Defenses against pro-oxidant forces — maintenance of cellular and genomic integrity and longevity. Radiat. Res. 190, 331–349 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, T. et al. Simulated microgravity promotes cell apoptosis through suppressing Uev1A/TICAM/TRAF/NF-κB-regulated anti-apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. J. Cell. Biochem. 117, 2138–2148 (2016).

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes, Y. T., Boell, V. K., Cardella, G. D. & Forti, F. L. Downregulation of the Rho GTPase pathway abrogates resistance to ionizing radiation in wild-type p53 glioblastoma by suppressing DNA repair mechanisms. Cell Death Dis. 14, 283 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shokrollahi, M. et al. DNA double-strand break-capturing nuclear envelope tubules drive DNA repair. Nat. Struct. Mol. Biol. 31, 1319–1330 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Luxton, J. J. et al. Telomere length dynamics and DNA damage responses associated with long-duration spaceflight. Cell Rep. 33, 108457 (2020).

    Article  PubMed  CAS  Google Scholar 

  • George, K., Rhone, J., Beitman, A. & Cucinotta, F. A. Cytogenetic damage in the blood lymphocytes of astronauts: effects of repeat long-duration space missions. Mutat. Res. 756, 165–169 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, S. et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ. 11, S45–S55 (2004).

    Article  PubMed  CAS  Google Scholar 

  • ElGindi, M. et al. May the force be with you (or not): the immune system under microgravity. Cells 10, 1941 (2021). 

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casalino-Matsuda, S. M. et al. Myeloid Zfhx3 deficiency protects against hypercapnia-induced suppression of host defense against influenza A virus. JCI Insight 9, e170316 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta, S. K. et al. Antiviral treatment with valacyclovir reduces virus shedding in saliva of Antarctic expeditioners. Front. Virol. 3, 1157659 (2023).

    Article  Google Scholar 

  • Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, 2407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rettig, T. A., Tan, J. C., Nishiyama, N. C., Chapes, S. K. & Pecaut, M. J. An analysis of the effects of spaceflight and vaccination on antibody repertoire diversity. Immunohorizons 5, 675–686 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Jones, C. W. et al. Molecular and physiological changes in the SpaceX Inspiration4 civilian crew. Nature 632, 1155–1164 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An, R. et al. Influence of the spaceflight environment on macrophage lineages. npj Microgravity 10, 63 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Overbey, E. G. et al. Collection of biospecimens from the Inspiration4 mission establishes the standards for the Space Omics and Medical Atlas (SOMA). Nat. Commun. 15, 4964 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Medina, J. S. et al. Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight. Precis. Clin. Med. 7, pbae007 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, H. W. The partial gravity of the Moon and Mars appears insufficient to maintain human health. In 50th International Conference on Environmental Systems (ICES, 2021).

  • Richter, C., Braunstein, B., Winnard, A., Nasser, M. & Weber, T. Human biomechanical and cardiopulmonary responses to partial gravity — a systematic review. Front. Physiol. 8, 583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor, C. T. & Scholz, C. C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 18, 573–587 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benavides Damm, T., Walther, I., Wüest, S. L., Sekler, J. & Egli, M. Cell cultivation under different gravitational loads using a novel random positioning incubator. Biotechnol. Bioeng. 111, 1180–1190 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miranda, S. et al. A dusty road for astronauts. Biomedicines 11, 1921 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, Y. et al. Research on rat’s pulmonary acute injury induced by lunar soil simulant. J. Chin. Med. Assoc. 81, 133–140 (2018).

    Article  PubMed  Google Scholar 

  • Sun, Y. et al. Mechanisms involved in inflammatory pulmonary fibrosis induced by lunar dust simulant in rats. Environ. Toxicol. 34, 131–140 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Lam, C.-W. et al. Comparative pulmonary toxicities of lunar dusts and terrestrial dusts (TiO2 & SiO2) in rats and an assessment of the impact of particle-generated oxidants on the dusts’ toxicities. Inhal. Toxicol. 34, 51–67 (2022).

    Article  PubMed  CAS  Google Scholar 

  • Horie, M., Miki, T., Honma, Y., Aoki, S. & Morimoto, Y. Evaluation of cellular effects caused by lunar regolith simulant including fine particles. J. UOEH 37, 139–148 (2015).

    Article  PubMed  Google Scholar 

  • Li, M. et al. Lunar soil simulants alter macrophage survival and function. J. Appl. Toxicol. 39, 1413–1423 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H. et al. NLRP3 Inflammasome mediates silica-induced lung epithelial injury and aberrant regeneration in lung stem/progenitor cell-derived organotypic models. Int. J. Biol. Sci. 19, 1875–1893 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caston, R., Luc, K., Hendrix, D., Hurowitz, J. A. & Demple, B. Assessing toxicity and nuclear and mitochondrial DNA damage caused by exposure of mammalian cells to lunar regolith simulants. GeoHealth 2, 139–148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Iosim, S., MacKay, M., Westover, C. & Mason, C. E. Translating current biomedical therapies for long duration, deep space missions. Precis. Clin. Med. 2, 259–269 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401–407 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. E. & Graham, L. D. A Flexible Lunar Architecture for Exploration (FLARE) supporting NASA’s Artemis program. Acta Astronaut. 177, 351–372 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M. & Buchen, B. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203, S187–S197 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kiss, J. Z., Wolverton, C., Wyatt, S. E., Hasenstein, K. H. & van Loon, J. J. W. A. Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front. Plant. Sci. 10, 1577 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vashi, A., Sreejith, K. R. & Nguyen, N.-T. Lab-on-a-chip technologies for microgravity simulation and space applications. Micromachines 14, 116 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Anil-Inevi, M. et al. Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Sci. Rep. 8, 7239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Marycz, K., Kornicka, K. & Röcken, M. Static magnetic field (SMF) as a regulator of stem cell fate — new perspectives in regenerative medicine arising from an underestimated tool. Stem Cell Rev. Rep. 14, 785–792 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Morey-Holton, E. R. & Globus, R. K. Hindlimb unloading rodent model: technical aspects. J. Appl. Physiol. 92, 1367–1377 (2002).

    Article  PubMed  Google Scholar 

  • Morey-Holton, E., Globus, R. K., Kaplansky, A. & Durnova, G. Experimentation with Animal Models in Space 107–140 (Elsevier, 2005).

  • Mortreux, M., Nagy, J. A., Ko, F. C., Bouxsein, M. L. & Rutkove, S. B. A novel partial gravity ground-based analog for rats via quadrupedal unloading. J. Appl. Physiol. 125, 175–182 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Pavy-Le Traon, A., Heer, M., Narici, M. V., Rittweger, J. & Vernikos, J. From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur. J. Appl. Physiol. 101, 143–194 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Saveko, A. et al. Impact of different ground-based microgravity models on human sensorimotor system. Front. Physiol. 14, 1085545 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmersbach, R., Häder, D.-P. & Braun, M. Gravitational Biology I: Gravity Sensing and Graviorientation in Microorganisms and Plants 13–26 (Springer International Publishing, 2018).

  • Cucinotta, F. A., Kim, M.-H. Y., Chappell, L. J. & Huff, J. L. How safe is safe enough? Radiation risk for a human mission to Mars. PLoS ONE 8, e74988 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 1162–1184 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borovsky, J. E., Halekas, J. S. & Whittlesey, P. L. The electron structure of the solar wind. Front. Astron. Space Sci. 8, 690005 (2021).

    Article  Google Scholar 

  • Durante, M. & Cucinotta, F. A. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 83, 1245–1281 (2011).

    Article  CAS  Google Scholar 

  • Dobney, W. et al. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. Front. Nucl. Med. 3, 1225034 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huff, J. L. et al. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory — progress, challenges and recommendations on mixed-field effects. Life Sci. Space Res. 36, 90–104 (2023).

    Google Scholar 

  • Norbury, J. W. et al. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sci. Space Res. 8, 38–51 (2016).

    Google Scholar 

  • Feuerecker, M. et al. Immune sensitization during 1 year in the Antarctic high-altitude Concordia environment. Allergy 74, 64–77 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Buchheim, J.-I. et al. Exploratory RNA-seq analysis in healthy subjects reveals vulnerability to viral infections during a 12-month period of isolation and confinement. Brain Behav. Immun. Health 9, 100145 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngo-Anh, T. J., Rossiter, A., Suvorov, A., Vassilieva, G. & Gushin, V. in Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies (ed. Choukér, A.) 677–692 (Springer International Publishing, 2020).

  • Campisi, M., Cannella, L. & Pavanello, S. Cosmic chronometers: is spaceflight a catalyst for biological ageing? Ageing Res. Rev. 95, 102227 (2024).

    Article  PubMed  CAS  Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  • Baechle, J. J. et al. Chronic inflammation and the hallmarks of aging. Mol. Metab. 74, 101755 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Turki, T. M. et al. Telomeric RNA (TERRA) increases in response to spaceflight and high-altitude climbing. Commun. Biol. 7, 698 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pioli, P. D., Casero, D., Montecino-Rodriguez, E., Morrison, S. L. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366.e6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bisserier, M. et al. Cell-free mitochondrial DNA as a potential biomarker for astronauts’ health. J. Am. Heart Assoc. 10, e022055 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nidadavolu, L. S. et al. Associations between circulating cell-free mitochondrial DNA, inflammatory markers, and cognitive and physical outcomes in community dwelling older adults. Immun. Ageing 20, 24 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchheim, J.-I. et al. Stress related shift toward inflammaging in cosmonauts after long-duration space flight. Front. Physiol. 10, 85 (2019). This study, which monitored 12 cosmonauts during long-duration spaceflight, found a sustained stress response characterized by increased endocannabinoids and aberrant immune activation, with signs of inflammation with some similarities to ageing, evident in altered lymphocyte percentages, cytokine levels and T cell repertoire.

    Article  PubMed  PubMed Central  Google Scholar 

  • ElGindi, M. et al. Effects of an aged tissue niche on the immune potency of dendritic cells using simulated microgravity. npj Aging 9, 14 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston, S. L. Flight crew health stabilization program. Space Medicine Division (2010).

  • Petersen, E. et al. Adapting disease prevention protocols for human spaceflight during COVID-19. Aerosp. Med. Hum. Perform. 92, 597–602 (2021).

    Article  PubMed  Google Scholar 

  • Makedonas, G., Mehta, S. K., Scheuring, R. A., Haddon, R. & Crucian, B. E. SARS-CoV-2 pandemic impacts on NASA ground operations to protect ISS astronauts. J. Allergy Clin. Immunol. Pract. 8, 3247–3250 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Crucian, B. et al. A case of persistent skin rash and rhinitis with immune system dysregulation onboard the International Space Station. J. Allergy Clin. Immunol. Pract. 4, 759–762.e8 (2016).

    Article  PubMed  Google Scholar 

  • Mehta, S. K. et al. Immune system dysregulation preceding a case of laboratory-confirmed zoster/dermatitis on board the International Space Station. J. Allergy Clin. Immunol. Glob. 3, 100244 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Krieger, S. S. et al. Alterations in saliva and plasma cytokine concentrations during long-duration spaceflight. Front. Immunol. 12, 725748 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agha, N. H. et al. Exercise as a countermeasure for latent viral reactivation during long duration space flight. FASEB J. 34, 2869–2881 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Diaz, T. E., Ives, E. C., Lazare, D. I. & Buckland, D. M. Expiration analysis of the International Space Station formulary for exploration mission planning. npj Microgravity 10, 76 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Crucian, B. et al. Spaceflight validation of technology for point-of-care monitoring of peripheral blood WBC and differential in astronauts during space missions. Life Sci. Space Res. 31, 29–33 (2021).

    Google Scholar 

  • Space Station Research Investigation. NASA mission database entry [Online] https://www.nasa.gov/mission/station/research-explorer/investigation/?#id=8821 (accessed 2025).

  • Dubeau-Laramée, G., Rivière, C., Jean, I., Mermut, O. & Cohen, L. Y. Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the international space station. Cytom. A 85, 322–331 (2014).

    Article  Google Scholar 

  • Crucian, B. & Sams, C. Reduced gravity evaluation of potential spaceflight-compatible flow cytometer technology. Cytom. B Clin. Cytom. 66, 1–9 (2005).

    Article  Google Scholar 

  • Rea, D. J. et al. Single drop cytometry onboard the International Space Station. Nat. Commun. 15, 2634 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Read Entire Article