[1]
|
Xie W, Li B, Liu L, Li H, Yue M, et al. 2025. Advanced systems for enhanced CO2 electroreduction. Chemical Society Reviews 54:898−959 doi: 10.1039/D4CS00563E
CrossRef Google Scholar
|
[2]
|
Chu N, Li D, Zeng RJ, Jiang Y, Liang P. 2025. Microbial electrochemical wastewater refining. Engineering 46:245−256 doi: 10.1016/j.eng.2024.07.018
CrossRef Google Scholar
|
[3]
|
Van Den Berghe M, Walworth NG, Dalvie NC, Dupont CL, et al. 2024. Microbial Catalysis for CO2 Sequestration: A Geobiological Approach. Cold Spring Harbor Perspectives in Biology 16:a041673 doi: 10.1101/cshperspect.a041673
CrossRef Google Scholar
|
[4]
|
Gong A, Wang G, Qi X, He Y, Yang X, et al. 2025. Energy recovery and saving in municipal wastewater treatment engineering practices. Nature Sustainability 8:112−119 doi: 10.1038/s41893-024-01478-5
CrossRef Google Scholar
|
[5]
|
Fasihi M, Jouzi F, Tervasmäki P, Vainikka P, Breyer C. 2025. Global potential of sustainable single-cell protein based on variable renewable electricity. Nature Communications 16:1496 doi: 10.1038/s41467-025-56364-1
CrossRef Google Scholar
|
[6]
|
Zhu Q, Rooney CL, Shema H, Zeng C, Panetier JA, et al. 2024. The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO reduction. Nature Catalysis 7:987−999 doi: 10.1038/s41929-024-01190-9
CrossRef Google Scholar
|
[7]
|
Zhang ZM, Wang T, Cai YC, Li XY, Ye JY, et al. 2024. Probing electrolyte effects on cation-enhanced CO2 reduction on copper in acidic media. Nature Catalysis 7:807−817 doi: 10.1038/s41929-024-01179-4
CrossRef Google Scholar
|
[8]
|
Zhang S, Shen Y, Zheng C, Xu Q, Sun Y, et al. 2024. Recent advances, challenges, and perspectives on carbon capture. Frontiers of Environmental Science & Engineering 18:75 doi: 10.1007/s11783-024-1835-0
CrossRef Google Scholar
|
[9]
|
Xu M, Zhou H, Zou R, Yang X, Su Y, et al. 2021. Beyond the farm: Making edible protein from CO2 via hybrid bioinorganic electrosynthesis. One Earth 4:868−878 doi: 10.1016/j.oneear.2021.05.007
CrossRef Google Scholar
|
[10]
|
Shi J, Lin Y, Li P, Mickel P, Sun C, et al. 2024. Monolithic-to-focal evolving biointerfaces in tissue regeneration and bioelectronics. Nature Chemical Engineering 1:73−86 doi: 10.1038/s44286-023-00008-y
CrossRef Google Scholar
|
[11]
|
Luo S, Adam D, Giaveri S, Barthel S, Cestellos-Blanco S, et al. 2023. ATP production from electricity with a new-to-nature electrobiological module. Joule 7:1745−1758 doi: 10.1016/j.joule.2023.07.012
CrossRef Google Scholar
|
[12]
|
Chen P, Liu X, Gu C, Zhong P, Song N, et al. 2022. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 612:546−554 doi: 10.1038/s41586-022-05499-y
CrossRef Google Scholar
|
[13]
|
Wang C, Dong W, Zhang P, Ma Y, Han Z, et al. 2024. Formate-Mediated Electroenzymatic Synthesis via Biological Cofactor NADH. Angewandte Chemie International Edition 63:e202408756 doi: 10.1002/anie.202408756
CrossRef Google Scholar
|
[14]
|
Hou J, Lu Y, Chen Q, Liao X, Wu X, et al. 2024. Multifunctional biomolecular corona-inspired nanoremediation of antibiotic residues. Proceedings of the National Academy of Sciences 121:e2409955121 doi: 10.1073/pnas.2409955121
CrossRef Google Scholar
|
[15]
|
Iwasaki K, Neuhauser C, Stokes C, Rayshubskiy A. 2025. The fruit fly, Drosophila melanogaster, as a microrobotics platform. Proceedings of the National Academy of Sciences 122:e2426180122 doi: 10.1073/pnas.2426180122
CrossRef Google Scholar
|
[16]
|
Zhang P, Cao M, Chetwynd AJ, Faserl K, Abdolahpur Monikh F, et al. 2024. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nature Protocols 19:3000−3047 doi: 10.1038/s41596-024-01009-8
CrossRef Google Scholar
|
[17]
|
Cong Y, Qiao R, Wang X, Ji Y, Yang J, et al. 2024. Protein corona-mediated inhibition of nanozyme activity: impact of protein shape. Journal of the American Chemical Society 146:10478−10488 doi: 10.1021/jacs.3c14046
CrossRef Google Scholar
|
[18]
|
Ma X, Liang X, Li Y, Feng Q, Cheng K, et al. 2023. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nature Communications 14:1606 doi: 10.1038/s41467-023-37225-1
CrossRef Google Scholar
|
[19]
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, et al. 2024. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chemical Reviews 124:9081−9112 doi: 10.1021/acs.chemrev.3c00831
CrossRef Google Scholar
|
[20]
|
Han HX, Tian LJ, Liu DF, Yu HQ, Sheng GP, Xiong Y. 2022. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems. Journal of the American Chemical Society 144:6434−6441 doi: 10.1021/jacs.2c00934
CrossRef Google Scholar
|
[21]
|
Ding Y, Bertram JR, Eckert C, Bommareddy RR, Patel R, et al. 2019. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids. Journal of the American Chemical Society 141:10272−10282 doi: 10.1021/jacs.9b02549
CrossRef Google Scholar
|
[22]
|
Kang W, Mu L, Hu X. 2024. Marine colloids boost nitrogen fixation in trichodesmium erythraeum by photoelectrophy. Environmental Science & Technology 58:9236−9249 doi: 10.1021/acs.est.4c01849
CrossRef Google Scholar
|
[23]
|
Wang B, Xiao K, Jiang Z, Wang J, Yu JC, et al. 2019. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy & Environmental Science 12:2185−91 doi: 10.1039/C9EE00705A
CrossRef Google Scholar
|
[24]
|
Wang B, Zhang Y, Minteer SD. 2023. Renewable electron-driven bioinorganic nitrogen fixation: a superior route toward green ammonia? Energy & Environmental Science 16:404−420 doi: 10.1039/D2EE03132A
CrossRef Google Scholar
|
[25]
|
Huang S, Chen K, Chen X, Liao H, Zeng RJ, et al. 2023. Sunlight Significantly Enhances Soil Denitrification via an Interfacial Biophotoelectrochemical Pathway. Environmental Science & Technology 57:7733−7742 doi: 10.1021/acs.est.3c00236
CrossRef Google Scholar
|
[26]
|
Chen M, Cai Q, Chen X, Huang S, Feng Q, et al. 2022. Anthraquinone-2-sulfonate as a microbial photosensitizer and capacitor drives solar-to-N2O production with a quantum efficiency of almost unity. Environmental Science & Technology 56:5161−5169 doi: 10.1021/acs.est.1c08710
CrossRef Google Scholar
|
[27]
|
Huang S, Chen M, Diao Y, Feng Q, Zeng RJ, et al. 2022. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification. Environmental Science & Technology 56:4632−4641 doi: 10.1021/acs.est.1c07556
CrossRef Google Scholar
|
[28]
|
Guo M, Liu G, Qiao S, Quan X. 2024. Bacteria-photocatalyst biohybrid system for sustainable ammonium production. Engineering 50:52−59 doi: 10.1016/j.eng.2024.08.004
CrossRef Google Scholar
|
[29]
|
Zhong C, Ren Y, Guo YY, Lu A, Liu J. 2024. Photoelectron-Promoted sulfate reduction for heavy metal removal without organic carbon addition. Environmental Science & Technology 58:21680−21691 doi: 10.1021/acs.est.4c08073
CrossRef Google Scholar
|
[30]
|
Gralnick JA, Vali H, Lies DP, Newman DK. 2006. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proceedings of the National Academy of Sciences 103:4669−74 doi: 10.1073/pnas.0505959103
CrossRef Google Scholar
|
[31]
|
Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Reviews Microbiology 8:706−716 doi: 10.1038/nrmicro2422
CrossRef Google Scholar
|
[32]
|
Kundu BB, Krishnan J, Szubin R, Patel A, Palsson BO, et al. 2025. Extracellular respiration is a latent energy metabolism in Escherichia coli. Cell 188:2907−2924 doi: 10.1016/j.cell.2025.03.016
CrossRef Google Scholar
|
[33]
|
Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA, et al. 2020. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell 182:919−932.e19 doi: 10.1016/j.cell.2020.07.006
CrossRef Google Scholar
|
[34]
|
Baquero DP, Cvirkaite-Krupovic V, Hu SS, Fields JL, Liu X, et al. 2023. Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell 186:2853−2864.e8 doi: 10.1016/j.cell.2023.05.012
CrossRef Google Scholar
|
[35]
|
Wang F, Gu Y, O'Brien JP, Yi SM, Yalcin SE, et al. 2019. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177:361−369.e10 doi: 10.1016/j.cell.2019.03.029
CrossRef Google Scholar
|
[36]
|
Logan BE, Rossi R, Ragab Aa, Saikaly PE. 2019. Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology 17:307−19 doi: 10.1038/s41579-019-0173-x
CrossRef Google Scholar
|
[37]
|
Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, et al. 2006. Microbial fuel cells: methodology and technology. Environmental Science & Technology 40:5181−5192 doi: 10.1021/es0605016
CrossRef Google Scholar
|
[38]
|
Cao X, Huang X, Liang P, Xiao K, Zhou Y, et al. 2009. A new method for water desalination using microbial desalination cells. Environmental Science & Technology 43:7148−7152 doi: 10.1021/es901950j
CrossRef Google Scholar
|
[39]
|
Liu H, Grot S, Logan BE. 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology 39:4317−4320 doi: 10.1021/es050244p
CrossRef Google Scholar
|
[40]
|
Cao B, Zhao Z, Peng L, Shiu HY, Ding M, et al. 2021. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science 373:1336−1340 doi: 10.1126/science.abf3427
CrossRef Google Scholar
|
[41]
|
Lu A, Li Y, Jin S, Wang X, Wu XL, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications 3:768 doi: 10.1038/ncomms1768
CrossRef Google Scholar
|
[42]
|
Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences 109:10042−46 doi: 10.1073/pnas.1117592109
CrossRef Google Scholar
|
[43]
|
Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103−10 doi: 10.1128/mBio.00103-10
CrossRef Google Scholar
|
[44]
|
Lu A, Liu J, Xu M, Zhou S, Liu J, et al. 2025. Novel energy utilization mechanisms of microorganisms in the hydrosphere. Fundamental Research 5(4):1584−1596 doi: 10.1016/j.fmre.2023.12.014
CrossRef Google Scholar
|
[45]
|
Liu X, Huang L, Rensing C, Ye J, Nealson KH, Zhou S. 2021. Syntrophic interspecies electron transfer drives carbon fixation and growth by Rhodopseudomonas palustris under dark, anoxic conditions. Science Advances 7:eabh1852 doi: 10.1126/sciadv.abh1852
CrossRef Google Scholar
|
[46]
|
Ter Heijne A, Harnisch F. 2024. Microbial electrodes. Nature Reviews Methods Primers 4:60 doi: 10.1038/s43586-024-00332-4
CrossRef Google Scholar
|
[47]
|
Guan X, Xie Y, Liu C. 2024. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material–microbe hybrids. Nature Catalysis 7:475−482 doi: 10.1038/s41929-024-01151-2
CrossRef Google Scholar
|
[48]
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, et al. 2023. Bioelectrocatalytic Synthesis: Concepts and Applications. Angewandte Chemie International Edition 62:e202307780 doi: 10.1002/anie.202307780
CrossRef Google Scholar
|
[49]
|
Chu N, Hao W, Wu Q, Liang Q, Jiang Y, et al. 2022. Microbial electrosynthesis for producing medium chain fatty acids. Engineering 16:141−153 doi: 10.1016/j.eng.2021.03.025
CrossRef Google Scholar
|
[50]
|
Lovley DR, Holmes DE. 2022. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology 20:5−19 doi: 10.1038/s41579-021-00597-6
CrossRef Google Scholar
|
[51]
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, et al. 2023. Electricity-driven microbial metabolism of carbon and nitrogen: a waste-to-resource solution. Environmental Science & Technology 57:4379−4395 doi: 10.1021/acs.est.2c07588
CrossRef Google Scholar
|
[52]
|
Cestellos-Blanco S, Zhang H, Kim JM, Shen YX, Yang P. 2020. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nature Catalysis 3:245−255 doi: 10.1038/s41929-020-0428-y
CrossRef Google Scholar
|
[53]
|
Song W, Zhang X, Li W, Li B, Liu B. 2025. Engineering biotic-abiotic hybrid systems for solar-to-chemical conversion. Chem 11:102351 doi: 10.1016/j.chempr.2024.10.018
CrossRef Google Scholar
|
[54]
|
Zhang J, Li F, Liu D, Liu Q, Song H. 2024. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chemical Society Reviews 53:1375−1446 doi: 10.1039/D3CS00537B
CrossRef Google Scholar
|
[55]
|
Liu Z, Wang K, Chen Y, Tan T, Nielsen J. 2020. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis 3:274−288 doi: 10.1038/s41929-019-0421-5
CrossRef Google Scholar
|
[56]
|
Wood JC, Grové J, Marcellin E, Heffernan JK, Hu S, et al. 2021. Strategies to improve viability of a circular carbon bioeconomy - a techno-economic review of microbial electrosynthesis and gas fermentation. Water Research 201:117306 doi: 10.1016/j.watres.2021.117306
CrossRef Google Scholar
|
[57]
|
Jiang Y, May HD, Lu L, Liang P, Huang X, et al. 2019. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Research 149:42−55 doi: 10.1016/j.watres.2018.10.092
CrossRef Google Scholar
|
[58]
|
Harnisch F, Deutzmann JS, Boto ST, Rosenbaum MA. 2024. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends in Biotechnology 42:1035−1047 doi: 10.1016/j.tibtech.2024.02.004
CrossRef Google Scholar
|
[59]
|
Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A. 2019. Making quantitative sense of electromicrobial production. Nature Catalysis 2:437−447 doi: 10.1038/s41929-019-0272-0
CrossRef Google Scholar
|
[60]
|
Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, et al. 2015. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environmental Science & Technology 49:13566−13574 doi: 10.1021/acs.est.5b03821
CrossRef Google Scholar
|
[61]
|
Xia R, Cheng J, Chen Z, Zhou X, Zhang Z, et al. 2023. Tailoring interfacial microbiome and charge dynamics via a rationally designed atomic-nanoparticle bridge for bio-electrochemical CO2-fixation. Energy & Environmental Science 16:1176−1186 doi: 10.1039/D2EE03886B
CrossRef Google Scholar
|
[62]
|
Xia R, Cheng J, Chen Z, Zhang Z, Zhou X, et al. 2023. Revealing Co-N4@Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO2-Conversion with Methanosarcina Barkeri. Advanced Materials 35:2304920 doi: 10.1002/adma.202304920
CrossRef Google Scholar
|
[63]
|
Quek G, Vázquez RJ, McCuskey SR, Lopez-Garcia F, Bazan GC. 2023. An n-Type Conjugated Oligoelectrolyte Mimics Transmembrane Electron Transport Proteins for Enhanced Microbial Electrosynthesis. Angewandte Chemie International Edition 62:e202305189 doi: 10.1002/anie.202305189
CrossRef Google Scholar
|
[64]
|
LaBelle EV, Marshall CW, May HD. 2020. Microbiome for the electrosynthesis of chemicals from carbon dioxide. Accounts of Chemical Research 53:62−71 doi: 10.1021/acs.accounts.9b00522
CrossRef Google Scholar
|
[65]
|
Hu L, Yang Y, Fu Q, Zhang L, Zhu X, et al. 2023. In situ probing the mass transport property inside an imitated three-dimensional porous bioelectrode. Environmental Science & Technology 57:6159−6168 doi: 10.1021/acs.est.2c09786
CrossRef Google Scholar
|
[66]
|
Li F, Zhang B, Long X, Yu H, Shi S, et al. 2025. Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate. Nature Communications 16:2882 doi: 10.1038/s41467-025-57497-z
CrossRef Google Scholar
|
[67]
|
Zhang L, Zhang Y, Liu Y, Wang S, Lee CK, et al. 2024. High power density redox-mediated Shewanella microbial flow fuel cells. Nature Communications 15:8302 doi: 10.1038/s41467-024-52498-w
CrossRef Google Scholar
|
[68]
|
Xie Y, Ersan S, Guan X, Wang J, Sha J, et al. 2023. Unexpected metabolic rewiring of CO2 fixation in H2-mediated materials-biology hybrids. Proceedings of the National Academy of Sciences 120:e2308373120 doi: 10.1073/pnas.2308373120
CrossRef Google Scholar
|
[69]
|
Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG. 2016. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352:1210−1213 doi: 10.1126/science.aaf5039
CrossRef Google Scholar
|
[70]
|
Li B, Jin P, Zhang Y. 2025. Powering up protein: How hydrogel-coated electrodes enhance biohybrid production. Water Research 278:123341 doi: 10.1016/j.watres.2025.123341
CrossRef Google Scholar
|
[71]
|
Rad R, Gehring T, Pellumbi K, Siegmund D, Nettmann E, et al. 2023. A hybrid bioelectrochemical system coupling a zero-gap cell and a methanogenic reactor for carbon dioxide reduction using a wastewater-derived catholyte. Cell Reports Physical Science 4:101526 doi: 10.1016/j.xcrp.2023.101526
CrossRef Google Scholar
|
[72]
|
Tian Y, Wu J, Liang D, Li J, Liu G, et al. 2023. Insights into the electron transfer behaviors of a biocathode regulated by cathode potentials in microbial electrosynthesis cells for biogas upgrading. Environmental Science & Technology 57:6733−42 doi: 10.1021/acs.est.2c09871
CrossRef Google Scholar
|
[73]
|
Rodrigues RM, Guan X, Iñiguez JA, Estabrook DA, Chapman JO, et al. 2019. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nature Catalysis 2:407−414 doi: 10.1038/s41929-019-0264-0
CrossRef Google Scholar
|
[74]
|
Angenent LT, Casini I, Schröder U, Harnisch F, Molitor B. 2024. Electrical-energy storage into chemical-energy carriers by combining or integrating electrochemistry and biology. Energy & Environmental Science 17:3682−3699 doi: 10.1039/D3EE01091K
CrossRef Google Scholar
|
[75]
|
Cheng S, Xing D, Call DF, Logan BE. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology 43:3953−3958 doi: 10.1021/es803531g
CrossRef Google Scholar
|
[76]
|
Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, et al. 2013. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. International Journal of Hydrogen Energy 38:3497−502 doi: 10.1016/j.ijhydene.2012.12.107
CrossRef Google Scholar
|
[77]
|
Deutzmann JS, Sahin M, Spormann AM. 2015. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6:e00496-15 doi: 10.1128/mBio.00496-15
CrossRef Google Scholar
|
[78]
|
Deutzmann JS, Spormann AM. 2016. Enhanced microbial electrosynthesis by using defined co-cultures. The ISME Journal 11:704−714 doi: 10.1038/ismej.2016.149
CrossRef Google Scholar
|
[79]
|
Le QAT, Kim HG, Kim YH. 2018. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzyme and Microbial Technology 116:1−5 doi: 10.1016/j.enzmictec.2018.05.005
CrossRef Google Scholar
|
[80]
|
Li Y, Xia D, Xie Y, Dong R, Cao M, et al. 2025. Direct CO2 transformation to malate via bioelectrosynthesis upon engineered Shewanella oneidensis. Journal of the American Chemical Society 147:15397−15407 doi: 10.1021/jacs.5c01494
CrossRef Google Scholar
|
[81]
|
Fang W, Guo W, Lu R, Yan Y, Liu X, et al. 2024. Durable CO2 conversion in the proton-exchange membrane system. Nature 626:86−91 doi: 10.1038/s41586-023-06917-5
CrossRef Google Scholar
|
[82]
|
Yang Y, Louisia S, Yu S, Jin J, Roh I, et al. 2023. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614:262−269 doi: 10.1038/s41586-022-05540-0
CrossRef Google Scholar
|
[83]
|
Jin J, Wicks J, Min Q, Li J, Hu Y, et al. 2023. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617:724−729 doi: 10.1038/s41586-023-05918-8
CrossRef Google Scholar
|
[84]
|
Huang JE, Li F, Ozden A, Sedighian Rasouli A, García de Arquer FP, et al. 2021. CO2 electrolysis to multicarbon products in strong acid. Science 372:1074−1078 doi: 10.1126/science.abg6582
CrossRef Google Scholar
|
[85]
|
Guerra OJ, Almajed HM, Smith WA, Somoza-Tornos A, Hodge BMS. 2023. Barriers and opportunities for the deployment of CO2 electrolysis in net-zero emissions energy systems. Joule 7:1111−1133 doi: 10.1016/j.joule.2023.05.002
CrossRef Google Scholar
|
[86]
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, et al. 2024. CO2 electrolyzers. Chemical Reviews 124:3648−3693 doi: 10.1021/acs.chemrev.3c00206
CrossRef Google Scholar
|
[87]
|
Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, et al. 2012. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596 doi: 10.1126/science.1217643
CrossRef Google Scholar
|
[88]
|
Jiang Y, Chu N, Zhang W, Ma J, Zhang F, et al. 2019. Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Research 159:87−94 doi: 10.1016/j.watres.2019.04.053
CrossRef Google Scholar
|
[89]
|
Ye C, Dattila F, Chen X, López N, Koper MTM. 2023. Influence of cations on HCOOH and CO formation during CO2 reduction on a PdMLPt(111) electrode. Journal of the American Chemical Society 145:19601−19610 doi: 10.1021/jacs.3c03786
CrossRef Google Scholar
|
[90]
|
Liu W, Zhai P, Li A, Wei B, Si K, et al. 2022. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nature Communications 13:1877 doi: 10.1038/s41467-022-29428-9
CrossRef Google Scholar
|
[91]
|
Lees EW, Liu A, Bui JC, Ren S, Weber AZ, et al. 2022. Electrolytic methane production from reactive carbon solutions. ACS Energy Letters 7:1712−1718 doi: 10.1021/acsenergylett.2c00283
CrossRef Google Scholar
|
[92]
|
Staerz AF, van Leeuwen M, Priamushko T, Saatkamp T, Endrődi B, et al. 2024. Effects of Iron Species on Low Temperature CO2 Electrolyzers. Angewandte Chemie International Edition 63:e202306503 doi: 10.1002/anie.202306503
CrossRef Google Scholar
|
[93]
|
Zhang P, Chen K, Xu B, Li J, Hu C, et al. 2022. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem 8:3363−3381 doi: 10.1016/j.chempr.2022.09.005
CrossRef Google Scholar
|
[94]
|
Ji Z, Zhang H, Liu H, Yaghi OM, Yang P. 2018. Cytoprotective metal-organic frameworks for anaerobic bacteria. Proceedings of the National Academy of Sciences 115:10582−10587 doi: 10.1073/pnas.1808829115
CrossRef Google Scholar
|
[95]
|
Haas T, Krause R, Weber R, Demler M, Schmid G. 2018. Technical photosynthesis involving CO2 electrolysis and fermentation. Nature Catalysis 1:32−39 doi: 10.1038/s41929-017-0005-1
CrossRef Google Scholar
|
[96]
|
Pu Y, Wang Y, Wu G, Wu X, Lu Y, et al. 2024. Tandem Acidic CO2 Electrolysis Coupled with Syngas Fermentation: A Two-Stage Process for Producing Medium-Chain Fatty Acids. Environmental Science & Technology 58:7445−7456 doi: 10.1021/acs.est.3c09291
CrossRef Google Scholar
|
[97]
|
Guo S, Li C, Su Y, Huang X, Zhang C, et al. 2025. Scalable Electro-Biosynthesis of Ectoine from Greenhouse Gases. Angewandte Chemie International Edition 64:e202415445 doi: 10.1002/anie.202415445
CrossRef Google Scholar
|
[98]
|
Molitor B, Mishra A, Angenent LT. 2019. Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. Energy & Environmental Science 12:3515−3521 doi: 10.1039/C9EE02381J
CrossRef Google Scholar
|
[99]
|
Hann EC, Overa S, Harland-Dunaway M, Narvaez AF, Le DN, et al. 2022. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nature Food 3:461−471 doi: 10.1038/s43016-022-00530-x
CrossRef Google Scholar
|
[100]
|
Sheng H, Liu C. 2022. Spatial decoupling boosts CO2 electro-biofixation. Nature Catalysis 5:357−58 doi: 10.1038/s41929-022-00792-5
CrossRef Google Scholar
|
[101]
|
Feng Y, Park Y, Hao S, Fang Z, Terlier T, et al. 2024. Three-chamber electrochemical reactor for selective lithium extraction from brine. Proceedings of the National Academy of Sciences 121:e2410033121 doi: 10.1073/pnas.2410033121
CrossRef Google Scholar
|
[102]
|
Chen FY, Elgazzar A, Pecaut S, Qiu C, Feng Y, et al. 2024. Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor. Nature Catalysis 7:1032−1043 doi: 10.1038/s41929-024-01200-w
CrossRef Google Scholar
|
[103]
|
Zhang SK, Feng Y, Elgazzar A, Xia Y, Qiu C, et al. 2023. Interfacial electrochemical-chemical reaction coupling for efficient olefin oxidation to glycols. Joule 7:1887−1901 doi: 10.1016/j.joule.2023.06.022
CrossRef Google Scholar
|
[104]
|
Zhang X, Fang Z, Zhu P, Xia Y, Wang H. 2025. Electrochemical regeneration of high-purity CO2 from (bi)carbonates in a porous solid electrolyte reactor for efficient carbon capture. Nature Energy 10:55−65 doi: 10.1038/s41560-024-01654-z
CrossRef Google Scholar
|
[105]
|
Zhu P, Wu ZY, Elgazzar A, Dong C, Wi TU, et al. 2023. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618:959−966 doi: 10.1038/s41586-023-06060-1
CrossRef Google Scholar
|
[106]
|
Zhang G, Tan B, Mok DH, Liu H, Ni B, et al. 2024. Electrifying HCOOH synthesis from CO2 building blocks over Cu-Bi nanorod arrays. Proceedings of the National Academy of Sciences 121:e2400898121 doi: 10.1073/pnas.2400898121
CrossRef Google Scholar
|
[107]
|
Yuan CY, Feng L, Qin X, Liu JX, Li X, et al. 2024. Constructing Metal(II)-sulfate site catalysts toward low overpotential carbon dioxide electroreduction to fuel chemicals. Angewandte Chemie International Edition 63:e202405255 doi: 10.1002/anie.202405255
CrossRef Google Scholar
|
[108]
|
Liu G, Zhong Y, Liu Z, Wang G, Gao F, et al. 2024. Solar-driven sugar production directly from CO2 via a customizable electrocatalytic-biocatalytic flow system. Nature Communications 15:2636 doi: 10.1038/s41467-024-46954-w
CrossRef Google Scholar
|
[109]
|
Zhu J, Li J, Lu R, Yu R, Zhao S, et al. 2023. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications 14:4670 doi: 10.1038/s41467-023-40342-6
CrossRef Google Scholar
|
[110]
|
Li L, Liu Z, Yu X, Zhong M. 2023. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angewandte Chemie International Edition 62:e202300226 doi: 10.1002/anie.202300226
CrossRef Google Scholar
|
[111]
|
Lin L, He X, Zhang XG, Ma W, Zhang B, et al. 2023. A nanocomposite of bismuth clusters and Bi2O2CO3 Sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angewandte Chemie International Edition 62:e202214959 doi: 10.1002/anie.202214959
CrossRef Google Scholar
|
[112]
|
Xia C, Zhu P, Jiang Q, Pan Y, Liang W, et al. 2019. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy 4:776−785 doi: 10.1038/s41560-019-0451-x
CrossRef Google Scholar
|
[113]
|
Fan L, Xia C, Zhu P, Lu Y, Wang H. 2020. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications 11:3633 doi: 10.1038/s41467-020-17403-1
CrossRef Google Scholar
|
[114]
|
Fan L, Zhu Z, Zhao S, Panda S, Zhao Y, et al. 2024. Blended nexus molecules promote CO2 to l-tyrosine conversion. Science Advances 10:eado1352 doi: 10.1126/sciadv.ado1352
CrossRef Google Scholar
|
[115]
|
Miao RK, Xu Y, Ozden A, Robb A, O'Brien CP, et al. 2021. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 5:2742−2753 doi: 10.1016/j.joule.2021.08.013
CrossRef Google Scholar
|
[116]
|
Zhu HL, Huang JR, Zhang MD, Yu C, Liao PQ, et al. 2024. Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. Journal of the American Chemical Society 146:1144−1152 doi: 10.1021/jacs.3c12423
CrossRef Google Scholar
|
[117]
|
Wi TU, Xie Y, Levell ZH, Feng D, Kim JYT, et al. 2024. Upgrading carbon monoxide to bioplastics via integrated electrochemical reduction and biosynthesis. Nature Synthesis 3:1392−1403 doi: 10.1038/s44160-024-00621-6
CrossRef Google Scholar
|
[118]
|
Miao C, Xu S, An Z, Pan X, Li Y, et al. 2025. Self-optimized reconstruction of metal-organic frameworks introduces cation vacancies for selective electrosynthesis of hydrogen peroxide. Angewandte Chemie International Edition 64:e202501930 doi: 10.1002/anie.202501930
CrossRef Google Scholar
|
[119]
|
Fan L, Zhao Y, Chen L, Chen J, Chen J, et al. 2023. Selective production of ethylene glycol at high rate via cascade catalysis. Nature Catalysis 6:585−595 doi: 10.1038/s41929-023-00977-6
CrossRef Google Scholar
|
[120]
|
Fan L, Bai X, Xia C, Zhang X, Zhao X, et al. 2022. CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications 13:2668 doi: 10.1038/s41467-022-30251-5
CrossRef Google Scholar
|
[121]
|
Zhang X, Zhao X, Zhu P, Adler Z, Wu ZY, et al. 2022. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nature Communications 13:2880 doi: 10.1038/s41467-022-30337-0
CrossRef Google Scholar
|
[122]
|
Hu X, Mei G, Chen X, Liu J, Xia BY, You B. 2023. Simultaneous generation of H2O2 and formate by co-electrolysis of water and CO2 over bifunctional Zn/SnO2 nanodots. Angewandte Chemie International Edition 62:e202304050 doi: 10.1002/anie.202304050
CrossRef Google Scholar
|
[123]
|
Xia C, Xia Y, Zhu P, Fan L, Wang H. 2019. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366:226−231 doi: 10.1126/science.aay1844
CrossRef Google Scholar
|
[124]
|
Zhao E, Zhang Y, Zhan J, Xia G, Yu G, et al. 2025. Optimization and scaling-up of porous solid electrolyte electrochemical reactors for hydrogen peroxide electrosynthesis. Nature Communications 16:3212 doi: 10.1038/s41467-025-58385-2
CrossRef Google Scholar
|
[125]
|
Sun Y, Dai L, Sui NLD, Li Y, Tian M, et al. 2024. Direct parallel electrosynthesis of high-value chemicals from atmospheric components on symmetry-breaking indium sites. Proceedings of the National Academy of Sciences 121:e2409620121 doi: 10.1073/pnas.2409620121
CrossRef Google Scholar
|
[126]
|
Liu YC, Huang JR, Zhu HL, Qiu XF, Yu C, et al. 2025. Electrosynthesis of pure urea from pretreated flue gas in a proton-limited environment established in a porous solid-state electrolyte electrolyser. Nature Nanotechnology 20:907−913 doi: 10.1038/s41565-025-01914-3
CrossRef Google Scholar
|
[127]
|
Elgazzar A, Wang H. 2025. Beyond molecular transformations in electrochemical porous solid electrolyte reactors. Nature Chemical Engineering 2:3−7 doi: 10.1038/s44286-024-00160-z
CrossRef Google Scholar
|
[128]
|
Zhu P, Wang H. 2021. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nature Catalysis 4:943−951 doi: 10.1038/s41929-021-00694-y
CrossRef Google Scholar
|
[129]
|
Li W, Zhai Y, Xia Q, Zhang X. 2024. An Emerging Solid-State Electrolyte Reactor to Drive the Future of Electrochemical Synthesis. Advanced Energy Materials 14:2403841 doi: 10.1002/aenm.202403841
CrossRef Google Scholar
|
[130]
|
Chu N, Jiang Y, Zeng RJ, Li D, Liang P. 2024. Solid electrolytes for low-temperature carbon dioxide valorization: a review. Environmental Science & Technology 58:10881−10896 doi: 10.1021/acs.est.4c02066
CrossRef Google Scholar
|
[131]
|
Jiang Y, Wu G, Pu Y, Wang Y, Chu N, et al. 2024. Flow-electrode capacitive separation of organic acid products and recovery of alkali cations after acidic CO2 electrolysis. Proceedings of the National Academy of Sciences 121:e2408205121 doi: 10.1073/pnas.2408205121
CrossRef Google Scholar
|
[132]
|
Lim J, Choi SY, Lee JW, Lee SY, Lee H. 2023. Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2. Proceedings of the National Academy of Sciences 120:e2221438120 doi: 10.1073/pnas.2221438120
CrossRef Google Scholar
|
[133]
|
Chu N, Jiang Y, Wang D, Li D, Zeng RJ. 2023. Super-fast charging biohybrid batteries through a power-to-formate-to-bioelectricity process by combining microbial electrochemistry and CO2 electrolysis. Angewandte Chemie International Edition 62:e202312147 doi: 10.1002/anie.202312147
CrossRef Google Scholar
|
[134]
|
Chu N, Zeng RJ, Jiang Y, Liang P. 2025. Conductivity-based rapid characterization of porous solid-state electrolyte reactors. Environmental Science & Technology Letters 12(8):963−969 doi: 10.1021/acs.estlett.5c00510
CrossRef Google Scholar
|
[135]
|
Kim JYT, Zhu P, Chen FY, Wu ZY, Cullen DA, et al. 2022. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nature Catalysis 5:288−299 doi: 10.1038/s41929-022-00763-w
CrossRef Google Scholar
|
[136]
|
Lin S, Wang J, Chen J, Lin P, Wang H, et al. 2025. Electrochemical pilot H2O2 production by solid-state electrolyte reactor: insights from a hybrid catalyst for 2-electron oxygen reduction reaction. Angewandte Chemie International Edition 137:e202502144 doi: 10.1002/anie.202502144
CrossRef Google Scholar
|
[137]
|
Wu B, Wang B, Cai B, Wu C, Tjiu WW, et al. 2024. A solid-state electrolyte facilitates acidic CO2 electrolysis without alkali metal cations by regulating proton transport. Journal of the American Chemical Society 146:29801−29809 doi: 10.1021/jacs.4c11564
CrossRef Google Scholar
|
[138]
|
Chu N, Wu X, Zhao Z, Zheng X, Lu Y, et al. 2024. Biohybrid CO2 electrolysis under external mode: using pure formic acid extracted from CO2 electroreduction for diverse microbial conversion. Fundamental Research In Press doi: 10.1016/j.fmre.2024.02.008
CrossRef Google Scholar
|
[139]
|
Cherniack LH, Hansen KU, Li Z, Taylor AK, Neyerlin KC, et al. 2025. An interfacial engineering approach toward operation of a porous solid electrolyte CO2 electrolyzer. ACS Energy Letters 10:1508−1516 doi: 10.1021/acsenergylett.5c00079
CrossRef Google Scholar
|
[140]
|
Zheng T, Zhang M, Wu L, Guo S, Liu X, et al. 2022. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis 5:388−396 doi: 10.1038/s41929-022-00775-6
CrossRef Google Scholar
|
[141]
|
Garg S, Xie Z, Chen JG. 2024. Tandem reactors and reactions for CO2 conversion. Nature Chemical Engineering 1:139−148 doi: 10.1038/s44286-023-00020-2
CrossRef Google Scholar
|
[142]
|
Bai X, Chen C, Zhao X, Zhang Y, Zheng Y, et al. 2024. Accelerating the reaction kinetics of CO2 reduction to multi-carbon products by synergistic effect between cation and aprotic solvent on copper electrodes. Angewandte Chemie International Edition 63:e202317512 doi: 10.1002/anie.202317512
CrossRef Google Scholar
|
[143]
|
Teng ZJ, Qin QL, Zhang W, Li J, Fu HH, et al. 2021. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. Microbiome 9:207 doi: 10.1186/s40168-021-01153-3
CrossRef Google Scholar
|
[144]
|
Lidbury I, Kröber E, Zhang Z, Zhu Y, Murrell JC, et al. 2016. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle. Environmental Microbiology 18:2754−2766 doi: 10.1111/1462-2920.13354
CrossRef Google Scholar
|
[145]
|
Zeng M, Fang W, Cen Y, Zhang X, Hu Y, et al. 2024. Reaction environment regulation for electrocatalytic CO2 reduction in acids. Angewandte Chemie International Edition 63:e202404574 doi: 10.1002/anie.202404574
CrossRef Google Scholar
|
[146]
|
Ma M, Seger B. 2024. Rational design of local reaction environment for electrocatalytic conversion of CO2 into multicarbon products. Angewandte Chemie International Edition 63:e202401185 doi: 10.1002/anie.202401185
CrossRef Google Scholar
|
[147]
|
Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, et al. 2017. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications 8:13924 doi: 10.1038/ncomms13924
CrossRef Google Scholar
|
[148]
|
Dranseike D, Cui Y, Ling AS, Donat F, Bernhard S, et al. 2025. Dual carbon sequestration with photosynthetic living materials. Nature Communications 16:3832 doi: 10.1038/s41467-025-58761-y
CrossRef Google Scholar
|
[149]
|
Tu W, Xu J, Thompson IP, Huang WE. 2023. Engineering artificial photosynthesis based on rhodopsin for CO2 fixation. Nature Communications 14:8012 doi: 10.1038/s41467-023-43524-4
CrossRef Google Scholar
|
[150]
|
Zheng Y, Wang H, Liu Y, Liu P, Zhu B, et al. 2024. Electrochemically coupled CH4 and CO2 consumption driven by microbial processes. Nature Communications 15:3097 doi: 10.1038/s41467-024-47445-8
CrossRef Google Scholar
|
[151]
|
Kong W, Huang L, Quan X, Zhao Z, Li Puma G. 2021. Efficient production of acetate from inorganic carbon (HCO3–) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo-assisted biocathodes. Applied Catalysis B: Environmental 284:119696 doi: 10.1016/j.apcatb.2020.119696
CrossRef Google Scholar
|
[152]
|
Liu C, Gallagher JJ, Sakimoto KK, Nichols EM, Chang CJ, et al. 2015. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Letters 15:3634−3639 doi: 10.1021/acs.nanolett.5b01254
CrossRef Google Scholar
|
[153]
|
Nichols EM, Gallagher JJ, Liu C, Su Y, Resasco J, et al. 2015. Hybrid bioinorganic approach to solar-to-chemical conversion. Proceedings of the National Academy of Sciences 112:11461−11466 doi: 10.1073/pnas.1508075112
CrossRef Google Scholar
|
[154]
|
Wang Q, Kalathil S, Pornrungroj C, Sahm CD, Reisner E. 2022. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nature Catalysis 5:633−641 doi: 10.1038/s41929-022-00817-z
CrossRef Google Scholar
|
[155]
|
Ding R, Wu Y, Wang Z, Tian X, Chen L, Zhao F. 2024. Lumichrome metabolism mediates semiconductor-driven solar energy conversion in non-phototrophic Shewanella. Cell Reports Physical Science 5:102017 doi: 10.1016/j.xcrp.2024.102017
CrossRef Google Scholar
|
[156]
|
Jin S, Jeon Y, Jeon MS, Shin J, Song Y, et al. 2021. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences 118:e2020552118 doi: 10.1073/pnas.2020552118
CrossRef Google Scholar
|
[157]
|
Wu H, Feng X, Wang L, Chen C, Wu P, et al. 2024. Solar energy for value-added chemical production by light-powered microbial factories. CCS Chemistry 6:1776−1788 doi: 10.31635/ccschem.023.202303011
CrossRef Google Scholar
|
[158]
|
Li X, Sun H, Mao X, Lao Y, Chen F. 2020. Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles. ACS Sustainable Chemistry & Engineering 8:7600−7608 doi: 10.1021/acssuschemeng.0c00315
CrossRef Google Scholar
|
[159]
|
Guo J, Suástegui M, Sakimoto KK, Moody VM, Xiao G, et al. 2018. Light-driven fine chemical production in yeast biohybrids. Science 362:813−816 doi: 10.1126/science.aat9777
CrossRef Google Scholar
|
[160]
|
Lin Y, Shi J, Feng W, Yue J, Luo Y, et al. 2023. Periplasmic biomineralization for semi-artificial photosynthesis. Science Advances 9:eadg5858 doi: 10.1126/sciadv.adg5858
CrossRef Google Scholar
|
[161]
|
Honda Y, Hagiwara H, Ida S, Ishihara T. 2016. Application to photocatalytic H2 Production of a whole-cell reaction by recombinant escherichia coli cells expressing [FeFe]-hydrogenase and maturases genes. Angewandte Chemie International Edition 55:8045−8048 doi: 10.1002/anie.201600177
CrossRef Google Scholar
|
[162]
|
Luo B, Wang YZ, Li D, Shen H, Xu LX, et al. 2021. A periplasmic photosensitized biohybrid system for solar hydrogen production. Advanced Energy Materials 11:2100256 doi: 10.1002/aenm.202100256
CrossRef Google Scholar
|
[163]
|
Ye J, Wang C, Gao C, Fu T, Yang C, et al. 2022. Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface. Nature Communications 13:6612 doi: 10.1038/s41467-022-34423-1
CrossRef Google Scholar
|
[164]
|
Ye J, Yu J, Zhang Y, Chen M, Liu X, et al. 2019. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Applied Catalysis B: Environmental 257:117916 doi: 10.1016/j.apcatb.2019.117916
CrossRef Google Scholar
|
[165]
|
Ye J, Ren G, Kang L, Zhang Y, Liu X, et al. 2020. Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion. iScience 23:101287 doi: 10.1016/j.isci.2020.101287
CrossRef Google Scholar
|
[166]
|
Hu A, Ye J, Ren G, Qi Y, Chen Y, Zhou S. 2022. Metal-free semiconductor-based bio-nano hybrids for sustainable CO2-to-CH4 conversion with high quantum yield. Angewandte Chemie International Edition 61:e202206508 doi: 10.1002/anie.202206508
CrossRef Google Scholar
|
[167]
|
Kalathil S, Rahaman M, Lam E, Augustin TL, Greer HF, et al. 2024. Solar-driven methanogenesis through microbial ecosystem engineering on carbon nitride. Angewandte Chemie International Edition 63:e202409192 doi: 10.1002/anie.202409192
CrossRef Google Scholar
|
[168]
|
Gu W, Hu J, Li L, Hong M, Yang C, et al. 2024. Natural AIEgens as ultraviolet sunscreens and photosynergists for solar fuel production. Environmental Science & Technology 58:20434−20443 doi: 10.1021/acs.est.4c05605
CrossRef Google Scholar
|
[169]
|
Gu W, Hu J, Li L, Hong M, Zhang D, et al. 2025. Liquid metal nanobiohybrids for high-performance solar-driven methanogenesis via multi-interface engineering. Angewandte Chemie International Edition 64:e202423336 doi: 10.1002/anie.202423336
CrossRef Google Scholar
|
[170]
|
Huang L, Liu X, Zhang Z, Ye J, Rensing C, et al. 2022. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. The ISME Journal 16:370−377 doi: 10.1038/s41396-021-01078-7
CrossRef Google Scholar
|
[171]
|
Sakimoto KK, Wong AB, Yang P. 2016. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351:74−77 doi: 10.1126/science.aad3317
CrossRef Google Scholar
|
[172]
|
Kornienko N, Sakimoto KK, Herlihy DM, Nguyen SC, Alivisatos AP, et al. 2016. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proceedings of the National Academy of Sciences 113:11750−11755 doi: 10.1073/pnas.1610554113
CrossRef Google Scholar
|
[173]
|
Wen N, Jiang Q, Cui J, Zhu H, Ji B, et al. 2022. Intracellular InP quantum dots facilitate the conversion of carbon dioxide to value-added chemicals in non-photosynthetic bacteria. Nano Today 47:101681 doi: 10.1016/j.nantod.2022.101681
CrossRef Google Scholar
|
[174]
|
Shi Y, Zhang K, Chen J, Zhang B, Guan X, et al. 2024. Long-term autotrophic growth and solar-to-chemical conversion in Shewanella Oneidensis MR-1 through light-driven electron transfer. Angewandte Chemie International Edition 63:e202412072 doi: 10.1002/anie.202412072
CrossRef Google Scholar
|
[175]
|
Wang X, Zhang J, Li K, An B, Wang Y, et al. 2022. Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications. Science Advances 8:eabm7665 doi: 10.1126/sciadv.abm7665
CrossRef Google Scholar
|
[176]
|
Xu M, Tremblay PL, Jiang L, Zhang T. 2019. Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride. Green Chemistry 21:2392−2400 doi: 10.1039/C8GC03695K
CrossRef Google Scholar
|
[177]
|
Yu W, Pavliuk MV, Liu A, Zeng Y, Xia S, et al. 2023. Photosynthetic polymer dots–bacteria biohybrid system based on transmembrane electron transport for fixing CO2 into poly-3-hydroxybutyrate. ACS Applied Materials & Interfaces 15:2183−2191 doi: 10.1021/acsami.2c18831
CrossRef Google Scholar
|
[178]
|
Guan X, Erşan S, Hu X, Atallah TL, Xie Y, et al. 2022. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybrids. Nature Catalysis 5:1019−1029 doi: 10.1038/s41929-022-00867-3
CrossRef Google Scholar
|
[179]
|
Zeng Y, Zhou X, Qi R, Dai N, Fu X, et al. 2021. Photoactive Conjugated Polymer-Based Hybrid Biosystems for Enhancing Cyanobacterial Photosynthesis and Regulating Redox State of Protein. Advanced Functional Materials 31:2007814 doi: 10.1002/adfm.202007814
CrossRef Google Scholar
|
[180]
|
Ye J, Zhuang M, Hong M, Zhang D, Ren G, et al. 2024. Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle. Nature Communications 15:5682 doi: 10.1038/s41467-024-50108-3
CrossRef Google Scholar
|
[181]
|
Chen S, Chen J, Zhang L, Huang S, Liu X, et al. 2023. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria. The ISME Journal 17:712−719 doi: 10.1038/s41396-023-01383-3
CrossRef Google Scholar
|
[182]
|
Wang C, Yu J, Ren G, Hu A, Liu X, et al. 2022. Self-replicating biophotoelectrochemistry system for sustainable CO methanation. Environmental Science & Technology 56:4587−4596 doi: 10.1021/acs.est.1c08340
CrossRef Google Scholar
|
[183]
|
Ye J, Hu A, Gao C, Li F, Li L, et al. 2024. Abiotic Methane Production Driven by Ubiquitous Non-Fenton-Type Reactive Oxygen Species. Angewandte Chemie International Edition 63:e202403884 doi: 10.1002/anie.202403884
CrossRef Google Scholar
|
[184]
|
Rivnay J, Raman R, Robinson JT, Schreib C, Cohen-Karni T, et al. 2025. Integrating bioelectronics with cell-based synthetic biology. Nature Reviews Bioengineering 3:317−332 doi: 10.1038/s44222-024-00262-6
CrossRef Google Scholar
|
[185]
|
Zhang Z, Li X, Yin J, Xu Y, Fei W, et al. 2018. Emerging hydrovoltaic technology. Nature Nanotechnology 13:1109−1119 doi: 10.1038/s41565-018-0228-6
CrossRef Google Scholar
|
[186]
|
Yin J, Zhou J, Fang S, Guo W. 2020. Hydrovoltaic energy on the way. Joule 4:1852−1855 doi: 10.1016/j.joule.2020.07.015
CrossRef Google Scholar
|
[187]
|
Song Y, Fang S, Xu N, Zhu J. 2025. Solar-driven interfacial evaporation technologies for food, energy and water. Nature Reviews Clean Technology 1:55−74 doi: 10.1038/s44359-024-00009-x
CrossRef Google Scholar
|
[188]
|
Liu X, Gao H, Ward JE, Liu X, Yin B, et al. 2020. Power generation from ambient humidity using protein nanowires. Nature 578:550−554 doi: 10.1038/s41586-020-2010-9
CrossRef Google Scholar
|
[189]
|
Hu Q, Ma Y, Ren G, Zhang B, Zhou S. 2022. Water evaporation–induced electricity with Geobacter sulfurreducens biofilms. Science Advances 8:eabm8047 doi: 10.1126/sciadv.abm8047
CrossRef Google Scholar
|
[190]
|
Hu Q, Lin X, Ren G, Lü J, Wang W, et al. 2024. Hydrovoltaic electricity generation induced by living leaf transpiration. Nature Water 2:988−998 doi: 10.1038/s44221-024-00311-9
CrossRef Google Scholar
|
[191]
|
Ren G, Ye J, Hu Q, Zhang D, Yuan Y, et al. 2024. Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nature Communications 15:4992 doi: 10.1038/s41467-024-49429-0
CrossRef Google Scholar
|
[192]
|
Ye J, Ren G, Liu L, Zhang D, Zeng RJ, et al. 2024. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization. Nature Water 2:531−540 doi: 10.1038/s44221-024-00253-2
CrossRef Google Scholar
|
[193]
|
Wu W, Wang ZL. 2016. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews Materials 1:16031 doi: 10.1038/natrevmats.2016.31
CrossRef Google Scholar
|
[194]
|
Cheng H, Jing Z, Yang L, Lu A, Ren G, et al. 2021. Sunlight-triggered synergy of hematite and Shewanella oneidensis MR-1 in Cr(VI) removal. Geochimica et Cosmochimica Acta 305:19−32 doi: 10.1016/j.gca.2021.04.034
CrossRef Google Scholar
|
[195]
|
Li R, Liu X, Wu G, Li G, Chen JH, et al. 2025. Pyrite stimulates the growth and sulfur oxidation capacity of anoxygenic phototrophic sulfur bacteria in euxinic environments. Science Advances 11:eadu7080 doi: 10.1126/sciadv.adu7080
CrossRef Google Scholar
|
[196]
|
Chen C, Ding S, Wang J. 2024. Materials consideration for the design, fabrication and operation of microscale robots. Nature Reviews Materials 9:159−172 doi: 10.1038/s41578-023-00641-2
CrossRef Google Scholar
|
[197]
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, et al. 2024. Bacterial therapies at the interface of synthetic biology and nanomedicine. Nature Reviews Bioengineering 2:120−135 doi: 10.1038/s44222-023-00119-4
CrossRef Google Scholar
|
[198]
|
Zhang Z, Chen Y, Klausen LH, Skaanvik SA, Wang D, et al. 2023. The rational design and development of microalgae-based biohybrid materials for biomedical applications. Engineering 24:102−113 doi: 10.1016/j.eng.2022.09.016
CrossRef Google Scholar
|
[199]
|
Zhang F, Li Z, Duan Y, Luan H, Yin L, et al. 2022. Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. Science Advances 8:eade6455 doi: 10.1126/sciadv.ade6455
CrossRef Google Scholar
|
[200]
|
Zhang F, Guo Z, Li Z, Luan H, Yu Y, et al. 2024. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Science Advances 10:eadn6157 doi: 10.1126/sciadv.adn6157
CrossRef Google Scholar
|
[201]
|
Yu Q, Mao H, Zhao Z, Quan X, Zhang Y. 2023. Electromotive force induced by dynamic magnetic field electrically polarized sediment to aggravate methane emission. Water Research 240:120097 doi: 10.1016/j.watres.2023.120097
CrossRef Google Scholar
|
[202]
|
Sun Z, Li T, Wu F, Yao T, Yang H, et al. 2024. Precise synergistic photothermal therapy guided by accurate temperature-dependent NIR-II fluorescence imaging. Advanced Functional Materials 34:2311622 doi: 10.1002/adfm.202311622
CrossRef Google Scholar
|
[203]
|
Zarei M, Lee G, Lee SG, Cho K. 2023. Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human–machine interfaces. Advanced Materials 35:2203193 doi: 10.1002/adma.202203193
CrossRef Google Scholar
|
[204]
|
Ye J, Wang S, Yang C, Zuo Z, Gu W, et al. 2025. Biohybrid-based pyroelectric bio-denitrification driven by temperature fluctuations. Nature Communications 16:5877 doi: 10.1038/s41467-025-60908-w
CrossRef Google Scholar
|
[205]
|
Pi S, Yang W, Feng W, Yang R, Chao W, et al. 2023. Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids. Nature Sustainability 6:1673−84 doi: 10.1038/s41893-023-01233-2
CrossRef Google Scholar
|
[206]
|
Lin Y, Gao X, Yue J, Fang Y, Shi J, et al. 2023. A soil-inspired dynamically responsive chemical system for microbial modulation. Nature Chemistry 15:119−28 doi: 10.1038/s41557-022-01064-2
CrossRef Google Scholar
|
[207]
|
Li Y, Li Y, Liu Y, Wu Y, Wu J, et al. 2020. Photoreduction of inorganic carbon(+IV) by elemental sulfur: Implications for prebiotic synthesis in terrestrial hot springs. Science Advances 6:eabc3687 doi: 10.1126/sciadv.abc3687
CrossRef Google Scholar
|
[208]
|
Ge Q, Liu Y, You W, Wang W, Li K, et al. 2023. Prebiotic synthesis of mineral-bearing microdroplet from inorganic carbon photoreduction at air–water interface. PNAS Nexus 2:pgad389 doi: 10.1093/pnasnexus/pgad389
CrossRef Google Scholar
|
[209]
|
Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK. 2004. H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences 101:12818−12823 doi: 10.1073/pnas.0405289101
CrossRef Google Scholar
|
[210]
|
Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S, et al. 2019. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. The ISME Journal 13:1750−62 doi: 10.1038/s41396-019-0391-2
CrossRef Google Scholar
|
[211]
|
Beyazay T, Ochoa-Hernández C, Song Y, Belthle KS, Martin WF, et al. 2023. Influence of composition of nickel-iron nanoparticles for abiotic CO2 conversion to early prebiotic organics. Angewandte Chemie International Edition 62:e202218189 doi: 10.1002/anie.202218189
CrossRef Google Scholar
|
[212]
|
Hudson R, de Graaf R, Strandoo Rodin M, Ohno A, Lane N, et al. 2020. CO2 reduction driven by a pH gradient. Proceedings of the National Academy of Sciences 117:22873−22879 doi: 10.1073/pnas.2002659117
CrossRef Google Scholar
|