Published June 17, 2025 | Version 1.0.1
Preprint Open
- 1. Digitial Mind Foundation
Description
The Integrated Predictive Workspace Theory (IPWT) presents a unified framework for the science of consciousness. It systematically integrates Predictive Coding Theory (PCT) and the Free Energy Principle (FEP) as the dynamic foundation for the generation and maintenance of conscious content, alongside Workspace Theory (WT) as the architectural platform for information integration and global broadcasting.
A pivotal innovation of IPWT involves the computational reconstruction of Integrated Information Theory (IIT)'s phenomenological axioms. This is achieved by introducing the concept of "logical irreducibility of information integration," grounded in synergistic information, which supersedes IIT's original reliance on physical causal indivisibility. This reinterpretation enables IPWT to be applied at the information flow and computational levels, thereby liberating it from strict dependence on specific physical causal topologies and effectively addressing the computational intractability inherent in the original IIT.
IPWT is designed to offer a computationally feasible and clinically robust model of consciousness, providing a unified paradigm for consciousness science and theoretical guidance for the understanding and intervention of mental disorders, while also possessing significant philosophical depth.
For technical applications and sociological unit tests of this research, please refer to Chain://.
Files
Additional details
- Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: active inference in the motor system. _Brain Struct Funct_, 218(3), 611-643.
- Arkhipov, A., da Costa, N., de Vries, S., et al. (2025). Integrating multimodal data to understand cortical circuit architecture and function. _Nature Neuroscience_, 28(4), 717-730.
- Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. _Annual Review of Neuroscience_, _28_, 403-450.
- Baars, B. J. (1988). _A cognitive theory of consciousness_. Cambridge University Press.
- Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., & Ay, N. (2014). Quantifying unique information. _Entropy_, _16_(4), 2161-2183.
- Budson, A. E., Richman, E. H., & Kensinger, E. A. (2022). Consciousness as a memory system. _Cognitive and Behavioral Neurology_.
- Butola, T., Hernández-Frausto, M., Blankvoort, S., et al. (2025). Hippocampus shapes entorhinal cortical output through a direct feedback circuit. _Nature Neuroscience_, 28(4), 811-822.
- Carhart-Harris, R. L. (2019). How do psychedelics work? _Current Opinion in Psychiatry_, _32_(1), 16-21.
- Casali, A. G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K. R., ... & Massimini, M. (2013). A theoretically based index of consciousness independent of sensory processing and behavior. _Science translational medicine_, _5_(198), 198ra105.
- Chalmers, D. J. (1995). Facing up to the problem of consciousness. _Journal of Consciousness Studies_, _2_(3), 200-219.
- Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. _Behavioral and Brain Sciences_, 36(3), 181-204.
- Corlett, P. R., Horga, G., Fletcher, P. C., Alderson-Day, B., Schmack, K., & Powers, A. R. (2019). Hallucinations and strong priors. _Trends in Cognitive Sciences_, 23(2), 114-127.
- Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. _Proceedings of the National Academy of Sciences of the United States of America_, _95_(24), 14529-14534.
- Fleming, S. M., & Shea, N. (2024). Quality space computations for consciousness. _Trends in Cognitive Sciences_, 28(10), 896-906.
- Friston, K. (2009). The free-energy principle: A rough guide to the brain? _Trends in Cognitive Sciences_, 13(7), 293-301.
- Friston, K. J. (2010). The free-energy principle: A unified brain theory? _Nature Reviews Neuroscience_, 11(2), 127-138.
- Friston, K. (2018). Does predictive coding have a future? _Nature Neuroscience_, 21(8), 1019-1021.
- Gabhart, K. M., Xiong, Y. S., et al. (2025). Predictive coding: a more cognitive process than we thought? _Trends in Cognitive Sciences_.
- Garrido, M. I., Kilner, J. M., Kiebel, S. J., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. _Clinical Neurophysiology_, 120(3), 453-463.
- Griffith, V. (2014). _Quantifying synergistic information_ (Doctoral dissertation, California Institute of Technology).
- Harris, H. W. (2025). Qualia as query act, the phenomenology of predictive error coding. _Frontiers in Psychology_, 16, 1531269.
- Hinton, G. (2022). The forward-forward algorithm: A new way to train neural networks. _arXiv preprint arXiv:2212.13345_.
- Klincewicz, M., Cheng, T., Schmitz, M., et al. (2025). What makes a theory of consciousness unscientific? _Nature Neuroscience_, 28(4), 689-693.
- Liu, J. & Bartolomeo, P. (2025). Aphantasia as a functional disconnection. _Trends in Cognitive Sciences_.
- Lotter, W., Kreiman, G., & Cox, D. (2017). Deep predictive coding networks for video prediction and unsupervised learning. _arXiv preprint arXiv:1605.08104_.
- Lotter, W., Kreiman, G., & Cox, D. (2020). A neural network trained for prediction mimics diverse features of biological neurons and perception. _Nature Machine Intelligence_, 2(4), 210-219.
- Lyons, S. H., & Gottfried, J. A. (2025). Predictive coding in the human olfactory system. _Trends in Cognitive Sciences_.
- Mørch, H. H. (2019). Is consciousness intrinsic?: A problem for the integrated information theory. _Journal of Consciousness Studies_, 26(1-2), 133-162.
- Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. _PLoS Computational Biology_, 10(5), e1003588.
- Paquola, C., Garber, M., Frässle, S., et al. (2025). The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow. _Nature Neuroscience_, 28(3), 654-664.
- Park, H., Keri, H. V. S., Yoo, C., Bi, C., & Pluta, S. R. (2025). Bilateral integration in somatosensory cortex is controlled by behavioral relevance. _Nature Neuroscience_, 28(4), 861-872.
- Powers, W. T. (1973). Behavior: The control of perception. _Chicago: Aldine publishing co._
- Powers, W. T. (2008). Living control systems III: The fact of control. _Benchmark Publications Inc._
- Qian, M., Wang, J., Gao, Y., et al. (2025). Multiple loci for foveolar vision in macaque monkey visual cortex. _Nature Neuroscience_, 28(1), 137-149.
- Radomski, M., & Dołęga, K. (2024). Forced Friends: Why the Free Energy Principle Is Not the New Hamilton's Principle. _Entropy_, 26(9), 797.
- Rao, R. P. N., & Ballard, D. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. _Nature Neuroscience_, 2(1), 79-87.
- Reinders, A. A. T. S., Marquand, A. F., Schlumpf, Y. R., Chalavi, S., Vissia, E. M., Nijenhuis, E. R. S., Dazzan, P., Jäncke, L., & Veltman, D. J. (2019). Aiding the diagnosis of dissociative identity disorder: Pattern recognition study of brain biomarkers. _British Journal of Psychiatry_, 215(3), 536–544.
- Rolls, E. T. (2024). The memory systems of the human brain and generative artificial intelligence. _Heliyon_, 10(11), e31965.
- Rosanova, M., Fecchio, M., Casarotto, S., Sarasso, S., Casali, A. G., & Massimini, M. (2018). Sleep-like cortical OFF-periods in patients with consciousness disorders. _Nature communications_, _9_(1), 332.
- Safron, A. (2022). Integrated world modeling theory expanded: Implications for the future of consciousness. _Frontiers in Computational Neuroscience_, 16, 642397.
- Sainburg, T., McPherson, T. S., Arneodo, E. M., et al. (2025). Expectation-driven sensory adaptations support enhanced acuity during categorical perception. _Nature Neuroscience_, 28(4), 861-872.
- Scholte, H. S., & de Haan, E. H. F. (2025). Beyond binding: from modular to natural vision. _Trends in Cognitive Sciences_, 29(6), 505-515.
- Searle, J. R. (2013). Can information theory explain consciousness? _The New York Review of Books_, 60(10), 52-55.
- Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. _Trends in Cognitive Sciences_, _17_(11), 565-573.
- Sterzer, P., Voss, M., Schlagenhauf, F., & Heinz, A. (2018). Decision-making in schizophrenia: A predictive-coding perspective. _Neuroimage_, _190_, 133-143.
- Stikvoort, W., Pérez-Ordoyo, E., Mindlin, I., Escrichs, A., Sitt, J. D., Kringelbach, M. L., Deco, G., & Sanz Perl, Y. (2025). Nonequilibrium brain dynamics elicited as the origin of perturbative complexity. _PLoS Computational Biology_, 21(6), e1013150.
- Toker, D., & Sommer, F. T. (2019). Information integration in large brain networks. _PLoS Computational Biology_, _15_(2), e1006807.
- Tononi, G. (2004). An information integration theory of consciousness. _BMC Neuroscience_, _5_(1), 42.
- Tononi, G. (2012). Integrated information theory of consciousness: An updated account. _Archives italiennes de biologie_, _150_(4), 293-329.
- Tononi, G., Albantakis, L., et al. (2025). Consciousness or pseudo-consciousness? A clash of two paradigms. _Nature Neuroscience_, 28(4), 694-702.
- Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. _Nature Reviews Neuroscience_, 17(7), 450-461.
- Vinck, M., Uran, C., Dowdall, J. R., et al. (2025). Large-scale interactions in predictive processing: oscillatory versus transient dynamics. _Trends in Cognitive Sciences_, 29(2), 133-148.
- Williams, P. L., & Beer, R. D. (2010). Nonnegative decomposition of multivariate information. _arXiv preprint arXiv:1004.2515_.
- Xaplanteris, P., Fournier, S., Pijls, N. H. J., Fearon, W. F., Barbato, E., Tonino, P. A. L., ... & De Bruyne, B. (2018). Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. _New England Journal of Medicine_, _379_(3), 250-259.
- Luppi, A. I., Rosas, F. E., Mediano, P. A. M., Menon, D. K., & Stamatakis, E. A. (2024). Information decomposition and the informational architecture of the brain. _Trends in Cognitive Sciences_, 0. <https://doi.org/10.1016/j.tics.2023.11.005>
.png)


