Bringing You the Latest Research on Context With First Principles & Visuals — June 2025 from ICML, IBM, NeurIPS, OHBM, and more
"Context engineering is the delicate art and science of filling the context window with just the right information for the next step." — Andrej Karpathy
A practical, first-principles handbook for moving beyond prompt engineering to the wider discipline of context design, orchestration, and optimization.
Prompt Engineering │ Context Engineering
↓ │ ↓
"What you say" │ "Everything else the model sees"
(Single instruction) │ (Examples, memory, retrieval,
│ tools, state, control flow)
Why This Repository Exists
"Meaning is not an intrinsic, static property of a semantic expression, but rather an emergent phenomenon actualized through the dynamic interaction between the expression and an interpretive agent situated within a specific context."
— Agostino et al. — June 2025, Indiana University
Prompt engineering gets all the attention, but we can now get excited for what comes next. Once you've mastered prompts, the real power comes from engineering the entire context window that surrounds those prompts. Guiding thought, if you will.
This repository provides a progressive, first-principles approach to context engineering, built around a biological metaphor:
Cell = Agent
Organ = Multi-Agent Systems
atoms → molecules → cells → organs → neural systems → neural + semantic field theory
│ │ │ │ │ │
single few- memory multi- cognitive tools + context = fields +
prompt shot state agent prompt programs persistence & resonance
"Abstraction is the cost of generalization"— Grant Sanderson (3Blue1Brown)
TL;DR: A three-stage architecture is identified that supports abstract reasoning in LLMs via a set of emergent symbol-processing mechanisms.
These include symbolic induction heads, symbolic abstraction heads, and retrieval heads.
Why Useful?
This supports why Markdown, Json, and similar structured, symbolic formats are more easily LLM parsable
Concept: Collaborate with agents to apply delimiters, syntax, symbols, symbolic words, metaphors and structure to improve reasoning/context/memory/persistence during inference
Context - Engineering /
├── LICENSE # MIT license
├── README .md # Quick-start overview
├── structure .md # Original structural map
├── STRUCTURE_v2 .md # Enhanced structural map with field theory
├── context .json # Original schema configuration
├── context_v2 .json # Extended schema with field protocols
├── context_v3 .json # Neural field extensions
├── context_v3 .5.j son # Symbolic mechanism integration
├── CITATIONS .md # Research references and bridges
│
├── 00_ foundations / # First-principles theory
│ ├── 01_ atoms_prompting .md # Atomic instruction units
│ ├── 02_ molecules_context .md # Few-shot examples/context
│ ├── 03_ cells_memory .md # Stateful conversation layers
│ ├── 04_ organs_applications .md # Multi-step control flows
│ ├── 05_ cognitive_tools .md # Mental model extensions
│ ├── 06_ advanced_applications .md # Real-world implementations
│ ├── 07_ prompt_programming .md # Code-like reasoning patterns
│ ├── 08_ neural_fields_foundations .md # Context as continuous fields
│ ├── 09_ persistence_and_resonance .md # Field dynamics and attractors
│ ├── 10_ field_orchestration .md # Coordinating multiple fields
│ ├── 11_ emergence_and_attractor_dynamics .md # Emergent properties
│ │── 12_ symbolic_mechanisms .md # Symbolic reasoning in LLMs
│ ├── 13_ quantum_semantics .md # Multiple meanings (Superposition)
│ └── 14_ unified_field_theory .md # Integrating theory models
│
├── 10_ guides_zero_to_hero / # Hands-on tutorials
│ ├── 01_ min_prompt .ipynb # Minimal prompt experiments
│ ├── 02_ expand_context .ipynb # Context expansion techniques
│ ├── 03_ control_loops .ipynb # Flow control mechanisms
│ ├── 04_ rag_recipes .ipynb # Retrieval-augmented patterns
│ ├── 05_ protocol_bootstrap .ipynb # Field protocol bootstrap
│ ├── 06_ protocol_token_budget .ipynb # Protocol efficiency
│ ├── 07_ streaming_context .ipynb # Real-time context
│ ├── 08_ emergence_detection .ipynb # Detecting emergence
│ ├── 09_ residue_tracking .ipynb # Tracking symbolic residue
│ └── 10_ attractor_formation .ipynb # Creating field attractors
│
├── 20_ templates / # Reusable components
│ ├── minimal_context .yaml # Base context structure
│ ├── control_loop .py # Orchestration template
│ ├── scoring_functions .py # Evaluation metrics
│ ├── prompt_program_template .py # Program structure template
│ ├── schema_template .yaml # Schema definition template
│ ├── recursive_framework .py # Recursive context template
│ ├── field_protocol_shells .py # Field protocol templates
│ ├── symbolic_residue_tracker .py # Residue tracking tools
│ ├── context_audit .py # Context analysis tool
│ ├── shell_runner .py # Protocol shell runner
│ ├── resonance_measurement .py # Field resonance metrics
│ ├── attractor_detection .py # Attractor analysis tools
│ ├── boundary_dynamics .py # Boundary operation tools
│ └── emergence_metrics .py # Emergence measurement
│
├── 30_ examples / # Practical implementations
│ ├── 00_ toy_chatbot / # Simple conversation agent
│ ├── 01_ data_annotator / # Data labeling system
│ ├── 02_ multi_agent_orchestrator / # Agent collaboration system
│ ├── 03_ vscode_helper / # IDE integration
│ ├── 04_ rag_minimal / # Minimal RAG implementation
│ ├── 05_ streaming_window / # Real-time context demo
│ ├── 06_ residue_scanner / # Symbolic residue demo
│ ├── 07_ attractor_visualizer / # Field visualization
│ ├── 08_ field_protocol_demo / # Protocol demonstration
│ └── 09_ emergence_lab / # Emergence experimentation
│
├── 40_ reference / # Deep-dive documentation
│ ├── token_budgeting .md # Token optimization strategies
│ ├── retrieval_indexing .md # Retrieval system design
│ ├── eval_checklist .md # PR evaluation criteria
│ ├── cognitive_patterns .md # Reasoning pattern catalog
│ ├── schema_cookbook .md # Schema pattern collection
│ ├── patterns .md # Context pattern library
│ ├── field_mapping .md # Field theory fundamentals
│ ├── symbolic_residue_types .md # Residue classification
│ ├── attractor_dynamics .md # Attractor theory and practice
│ ├── emergence_signatures .md # Detecting emergence
│ └── boundary_operations .md # Boundary management guide
│
├── 50_ contrib / # Community contributions
│ └── README .md # Contribution guidelines
│
├── 60_ protocols / # Protocol shells and frameworks
│ ├── README .md # Protocol overview
│ ├── shells / # Protocol shell definitions
│ │ ├── attractor .co .emerge .shell # Attractor co-emergence
│ │ ├── recursive .emergence .shell # Recursive field emergence
│ │ ├── recursive .memory .attractor .shell # Memory persistence
│ │ ├── field .resonance .scaffold .shell # Field resonance
│ │ ├── field .self_repair .shell # Self-repair mechanisms
│ │ └── context .memory .persistence .attractor .shell # Context persistence
│ ├── digests / # Simplified protocol documentation
│ └── schemas / # Protocol schemas
│ ├── fractalRepoContext .v3 .5.j son # Repository context
│ ├── fractalConsciousnessField .v1 .json # Field schema
│ ├── protocolShell .v1 .json # Shell schema
│ ├── symbolicResidue .v1 .json # Residue schema
│ └── attractorDynamics .v1 .json # Attractor schema
│
├── 70_ agents / # Agent demonstrations
│ ├── README .md # Agent overview
│ ├── 01_ residue_scanner / # Symbolic residue detection
│ ├── 02_ self_repair_loop / # Self-repair protocol
│ ├── 03_ attractor_modulator / # Attractor dynamics
│ ├── 04_ boundary_adapter / # Dynamic boundary tuning
│ └── 05_ field_resonance_tuner / # Field resonance optimization
│
├── 80_ field_integration / # Complete field projects
│ ├── README .md # Integration overview
│ ├── 00_ protocol_ide_helper / # Protocol development tools
│ ├── 01_ context_engineering_assistant / # Field-based assistant
│ ├── 02_ recursive_reasoning_system / # Recursive reasoning
│ ├── 03_ emergent_field_laboratory / # Field experimentation
│ └── 04_ symbolic_reasoning_engine / # Symbolic mechanisms
│
├── cognitive - tools / # Advanced cognitive framework
│ ├── README .md # Overview and quick-start guide
│ ├── cognitive - templates / # Templates for reasoning
│ │ ├── understanding .md # Comprehension operations
│ │ ├── reasoning .md # Analytical operations
│ │ ├── verification .md # Checking and validation
│ │ ├── composition .md # Combining multiple tools
│ │ └── emergence .md # Emergent reasoning patterns
│ │
│ ├── cognitive - programs / # Structured prompt programs
│ │ ├── basic - programs .md # Fundamental program structures
│ │ ├── advanced - programs .md # Complex program architectures
│ │ ├── program - library .py # Python implementations
│ │ ├── program - examples .ipynb # Interactive examples
│ │ └── emergence - programs .md # Emergent program patterns
│ │
│ ├── cognitive - schemas / # Knowledge representations
│ │ ├── user - schemas .md # User information schemas
│ │ ├── domain - schemas .md # Domain knowledge schemas
│ │ ├── task - schemas .md # Reasoning task schemas
│ │ ├── schema - library .yaml # Reusable schema library
│ │ └── field - schemas .md # Field representation schemas
│ │
│ ├── cognitive - architectures / # Complete reasoning systems
│ │ ├── solver - architecture .md # Problem-solving systems
│ │ ├── tutor - architecture .md # Educational systems
│ │ ├── research - architecture .md # Information synthesis
│ │ ├── architecture - examples .py # Implementation examples
│ │ └── field - architecture .md # Field-based architectures
│ │
│ └── integration / # Integration patterns
│ ├── with - rag .md # Integration with retrieval
│ ├── with - memory .md # Integration with memory
│ ├── with - agents .md # Integration with agents
│ ├── evaluation - metrics .md # Effectiveness measurement
│ └── with - fields .md # Integration with field protocols
│
└── .github / # GitHub configuration
├── CONTRIBUTING .md # Contribution guidelines
├── workflows / ci .yml # CI pipeline configuration
├── workflows / eval .yml # Evaluation automation
└── workflows / protocol_tests .yml # Protocol testing
Read 00_foundations/01_atoms_prompting.md (5 min)
Understand why prompts alone often underperform
Run 10_guides_zero_to_one/01_min_prompt.py (Jupyter Notebook style)
Experiment with a minimal working example
Explore 20_templates/minimal_context.yaml
Copy/paste a template into your own project
Study 30_examples/00_toy_chatbot/
See a complete implementation with context management
┌─────────────────┐ ┌──────────────────┐ ┌────────────────┐
│ 00_foundations/ │ │ 10_guides_zero_ │ │ 20_templates/ │
│ │────▶│ to_one/ │────▶│ │
│ Theory & core │ │ Hands-on │ │ Copy-paste │
│ concepts │ │ walkthroughs │ │ snippets │
└─────────────────┘ └──────────────────┘ └────────────────┘
│ │
│ │
▼ ▼
┌─────────────────┐ ┌────────────────┐
│ 40_reference/ │◀───────────────────────────▶│ 30_examples/ │
│ │ │ │
│ Deep dives & │ │ Real projects, │
│ eval cookbook │ │ progressively │
└─────────────────┘ │ complex │
▲ └────────────────┘
│ ▲
│ │
└────────────────────┐ ┌───────────┘
▼ ▼
┌─────────────────────┐
│ 50_contrib/ │
│ │
│ Community │
│ contributions │
└─────────────────────┘
Concept
What It Is
Why It Matters
Token Budget
Optimizing every token in your context
More tokens = more $$ and slower responses
Few-Shot Learning
Teaching by showing examples
Often works better than explanation alone
Memory Systems
Persisting information across turns
Enables stateful, coherent interactions
Retrieval Augmentation
Finding & injecting relevant documents
Grounds responses in facts, reduces hallucination
Control Flow
Breaking complex tasks into steps
Solve harder problems with simpler prompts
Context Pruning
Removing irrelevant information
Keep only what's necessary for performance
Metrics & Evaluation
Measuring context effectiveness
Iterative optimization of token use vs. quality
Cognitive Tools & Prompt Programming
Learm to build custom tools and templates
Prompt programming enables new layers for context engineering
Neural Field Theory
Context as a Neural Field
Modeling context as a dynamic neural field allows for iterative context updating
Symbolic Mechanisms
Symbolic architectures enable higher order reasoning
Smarter systems = less work
Quantum Semantics
Meaning as observer-dependent
Design context systems leveraging superpositional techniques
Karpathy + 3Blue1Brown Inspired Style
For learners of all experience levels
First principles – start with the fundamental context
Iterative add-on – add only what the model demonstrably lacks
Measure everything – token cost, latency, quality score
Delete ruthlessly – pruning beats padding
Code > slides – every concept has a runnable cell
Visualize everything — every concept is visualized with ASCII and symbolic diagrams
We welcome contributions! Check out CONTRIBUTING.md for guidelines.
MIT License
@misc {context-engineering ,
author = { Context Engineering Contributors} ,
title = { Context Engineering: Beyond Prompt Engineering} ,
year = { 2025} ,
publisher = { GitHub} ,
url = { https://github.com/davidkimai/context-engineering}
}
I've been looking forward to this being conceptualized and formalized as there wasn't a prior established field. Prompt engineering receives quite the stigma and doesn't quite cover what most researchers and I do.
Andrej Karpathy for coining "context engineering" and inspiring this repo
All contributors and the open source community