Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325 (1954).
Holstein, T. Studies of polaron motion: part II. The ‘small’ polaron. Ann. Phys. 8, 343 (1959).
Bredas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309 (1985).
Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560 (2021).
Landau, L. D. Motion of electrons in crystal lattice. Phys. Z. Sowjetunion 3, 664 (1933).
Martinez, G. & Horsch, P. Spin polarons in the t-J model. Phys. Rev. B 44, 317 (1991).
Verzelen, O., Ferreira, R. & Bastard, G. Excitonic polarons in semiconductor quantum dots. Phys. Rev. Lett. 88, 146803 (2002).
Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41 (2022).
Prokof’ev, N. V. & Svistunov, B. V. Polaron problem by diagrammatic quantum Monte Carlo. Phys. Rev. Lett. 81, 2514 (1998).
Mishchenko, A. S., Prokof’ev, N. V., Sakamoto, A. & Svistunov, B. V. Diagrammatic quantum Monte Carlo study of the Fröhlich polaron. Phys. Rev. B 62, 6317 (2000).
Mishchenko, A. S. & Nagaosa, N. Quasidegenerate self-trapping in one-dimensional charge transfer exciton. Phys. Rev. Lett. 86, 4624 (2001).
Mishchenko, A. S., Nagaosa, N., Prokof’ev, N. V., Sakamoto, A. & Svistunov, B. V. Optical conductivity of the Fröhlich polaron. Phys. Rev. Lett. 91, 236401 (2003).
Marchand, D. J. J. et al. Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model. Phys. Rev. Lett. 105, 266605 (2010).
Mishchenko, A. S., Nagaosa, N. & Prokof’ev, N. Diagrammatic Monte Carlo method for many-polaron problems. Phys. Rev. Lett. 113, 166402 (2014).
Mishchenko, A. S., Nagaosa, N., De Filippis, G., de Candia, A. & Cataudella, V. Mobility of Holstein polaron at finite temperature: an unbiased approach. Phys. Rev. Lett. 114, 146401 (2015).
Hahn, T., Klimin, S., Tempere, J., Devreese, J. T. & Franchini, C. Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions. Phys. Rev. B 97, 134305 (2018).
Mishchenko, A. S. et al. Polaron mobility in the ‘beyond quasiparticles’ regime. Phys. Rev. Lett. 123, 076601 (2019).
Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, 2004).
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).
Zhou, J.-J. et al. Perturbo: a software package for ab initio electron-phonon interactions, charge transport and ultrafast dynamics. Comput. Phys. Commun. 264, 107970 (2021).
Agapito, L. A. & Bernardi, M. Ab initio electron-phonon interactions using atomic orbital wave functions. Phys. Rev. B 97, 235146 (2018).
Kokott, S., Levchenko, S. V., Rinke, P. & Scheffler, M. First-principles supercell calculations of small polarons with proper account for long-range polarization effects. New J. Phys. 20, 033023 (2018).
Reticcioli, M., Diebold, U., Kresse, G. & Franchini, C. in Handbook of Materials Modeling 1–39 (Springer International Publishing, 2020).
Lee, N.-E., Chen, H.-Y., Zhou, J.-J. & Bernardi, M. Facile ab initio approach for self-localized polarons from canonical transformations. Phys. Rev. Mater. 5, 063805 (2021).
Luo, Y., Chang, B. K. & Bernardi, M. Comparison of the canonical transformation and energy functional formalisms for ab initio calculations of self-localized polarons. Phys. Rev. B 105, 155132 (2022).
Nery, J. P. et al. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: cumulants applied to the full first-principles theory and the Fröhlich polaron. Phys. Rev. B 97, 115145 (2018).
Zhou, J.-J. & Bernardi, M. Predicting charge transport in the presence of polarons: the beyond-quasiparticle regime in SrTiO3. Phys. Rev. Res. 1, 033138 (2019).
Lafuente-Bartolome, J. et al. Unified approach to polarons and phonon-induced band structure renormalization. Phys. Rev. Lett. 129, 076402 (2022).
Luo, Y., Desai, D., Chang, B. K., Park, J. & Bernardi, M. Data-driven compression of electron-phonon interactions. Phys. Rev. X 14, 021023 (2024).
Kim, A. J., Werner, P. & Valentí, R. Alleviating the sign problem in quantum Monte Carlo simulations of spin-orbit-coupled multiorbital Hubbard models. Phys. Rev. B 101, 045108 (2020).
Bernardi, M. First-principles dynamics of electrons and phonons. Eur. Phys. J. B 89, 239 (2016).
Greitemann, J. & Pollet, L. Lecture notes on diagrammatic Monte Carlo for the Fröhlich polaron. SciPost Phys. Lect. Notes 2 (2018).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).
Franchini, C. & Ragni, S. Diagrammatic Monte Carlo study of the Holstein polaron, Master’s thesis, Università di Bologna (2020).
Allen, P. B. & Cardona, M. Theory of the temperature dependence of the direct gap of germanium. Phys. Rev. B 23, 1495 (1981).
Lihm, J.-M. & Park, C.-H. Phonon-induced renormalization of electron wave functions. Phys. Rev. B 101, 121102 (2020).
Ciuchi, S., de Pasquale, F., Fratini, S. & Feinberg, D. Dynamical mean-field theory of the small polaron. Phys. Rev. B 56, 4494 (1997).
Mahan, G. D. Many-Particle Physics 3rd edn (Springer, 2000).
Moser, S. et al. Tunable polaronic conduction in anatase TiO2. Phys. Rev. Lett. 110, 196403 (2013).
van Mechelen, J. L. M. et al. Electron-phonon interaction and charge carrier mass enhancement in SrTiO3. Phys. Rev. Lett. 100, 226403 (2008).
Geondzhian, A. et al. Large polarons as key quasiparticles in SrTio3 and SrTio3-based heterostructures. Phys. Rev. Lett. 125, 126401 (2020).
Verdi, C., Caruso, F. & Giustino, F. Origin of the crossover from polarons to Fermi liquids in transition metal oxides. Nat. Commun. 8, 15769 (2017).
Whitfield, G. & Puff, R. Weak-coupling theory of the polaron energy-momentum relation. Phys. Rev. 139, A338 (1965).
Goulko, O., Mishchenko, A. S., Pollet, L., Prokof’ev, N. & Svistunov, B. Numerical analytic continuation: answers to well-posed questions. Phys. Rev. B 95, 014102 (2017).
Zhang, S. X. et al. Niobium doped TiO2: intrinsic transparent metallic anatase versus highly resistive rutile phase. J. Appl. Phys. 102, 013701 (2007).
Birschitzky, V. C., Leoni, L., Reticcioli, M. & Franchini, C. Machine learning small polaron dynamics. Phys. Rev. Lett. 134, 216301 (2025).
Fratini, S. & Ciuchi, S. Dynamical mean-field theory of transport of small polarons. Phys. Rev. Lett. 91, 256403 (2003).
Yagi, E., Hasiguti, R. R. & Aono, M. Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2–x. Phys. Rev. B 54, 7945 (1996).
Furubayashi, Y. et al. A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005).
Jeong, B.-S. et al. Properties of anatase CoxTi1−xO2 thin films epitaxially grown by reactive sputtering. Thin Solid Films 488, 194 (2005).
Kang, Y. & Peelaers, H. & Van de Walle, C. G. First-principles study of electron-phonon interactions and transport in anatase TiO2. Phys. Rev. B 100, 121113 (2019).
Lin, X. et al. Metallicity without quasi-particles in room-temperature strontium titanate. Appl. Phys. Lett. 2, 41 (2017).
Setvin, M. et al. Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014).
Levy, R., LeBlanc, J. & Gull, E. Implementation of the maximum entropy method for analytic continuation. Comput. Phys. Commun. 215, 149 (2017).
Kas, J. J., Rehr, J. J. & Reining, L. Cumulant expansion of the retarded one-electron Green function. Phys. Rev. B 90, 085112 (2014).
Zhou, J.-J. et al. Ab initio electron-phonon interactions in correlated electron systems. Phys. Rev. Lett. 127, 126404 (2021).
Mitrić, P., Janković, V., Vukmirović, N. & Tanasković, D. Cumulant expansion in the Holstein model: spectral functions and mobility. Phys. Rev. B 107, 125165 (2023).
Stojanović, V. M., Bobbert, P. A. & Michels, M. A. J. Nonlocal electron-phonon coupling: consequences for the nature of polaron states. Phys. Rev. B 69, 144302 (2004).
Li, W., Ren, J. & Shuai, Z. A general charge transport picture for organic semiconductors with nonlocal electron-phonon couplings. Nat. Commun. 12, 4260 (2021).
Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).
Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446 (2014).
Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys. Condens. Matter 31, 325902 (2019).
Bruneval, F. & Gonze, X. Accurate GW self-energies in a plane-wave basis using only a few empty states: towards large systems. Phys. Rev. B 78, 085125 (2008).
Baldini, E. et al. Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nat. Commun. 8, 13 (2017).
German, E., Faccio, R. & Mombrú, A. W. A DFT + U study on structural, electronic, vibrational and thermodynamic properties of TiO2 polymorphs and hydrogen titanate: tuning the Hubbard U-term. J. Phys. Commun. 1, 055006 (2017).
Traylor, J. G., Smith, H. G., Nicklow, R. M. & Wilkinson, M. K. Lattice dynamics of rutile. Phys. Rev. B 3, 3457 (1971).
Wehinger, B., Bosak, A. & Jochym, P. T. Soft phonon modes in rutile TiO2. Phys. Rev. B 93, 014303 (2016).
Monacelli, L. et al. The stochastic self-consistent harmonic approximation: calculating vibrational properties of materials with full quantum and anharmonic effects. J. Phys. Condens. Matter 33, 363001 (2021).
Zhou, J.-J., Hellman, O. & Bernardi, M. Electron-phonon scattering in the presence of soft modes and electron mobility in SrTiO3 perovskite from first principles. Phys. Rev. Lett. 121, 226603 (2018).
Verdi, C., Ranalli, L., Franchini, C. & Kresse, G. Quantum paraelectricity and structural phase transitions in strontium titanate beyond density functional theory. Phys. Rev. Mater. 7, L030801 (2023).
Verdi, C. & Giustino, F. Fröhlich electron-phonon vertex from first principles. Phys. Rev. Lett. 115, 176401 (2015).
Luo, Y., Park, J. & Bernardi, M. Dataset for first-principles diagrammatic Monte Carlo for electron-phonon interactions and polaron. Materials Cloud Archive https://doi.org/10.24435/materialscloud:zy-t3 (2025).
.png)


