First-principles diagrammatic Monte Carlo for electron–phonon and polaron

4 months ago 8
  • Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325 (1954).

    Article  ADS  Google Scholar 

  • Holstein, T. Studies of polaron motion: part II. The ‘small’ polaron. Ann. Phys. 8, 343 (1959).

    Article  ADS  Google Scholar 

  • Bredas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309 (1985).

    Article  Google Scholar 

  • Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560 (2021).

    Article  ADS  Google Scholar 

  • Landau, L. D. Motion of electrons in crystal lattice. Phys. Z. Sowjetunion 3, 664 (1933).

    Google Scholar 

  • Martinez, G. & Horsch, P. Spin polarons in the t-J model. Phys. Rev. B 44, 317 (1991).

    Article  ADS  Google Scholar 

  • Verzelen, O., Ferreira, R. & Bastard, G. Excitonic polarons in semiconductor quantum dots. Phys. Rev. Lett. 88, 146803 (2002).

    Article  ADS  Google Scholar 

  • Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41 (2022).

    Article  ADS  Google Scholar 

  • Prokof’ev, N. V. & Svistunov, B. V. Polaron problem by diagrammatic quantum Monte Carlo. Phys. Rev. Lett. 81, 2514 (1998).

    Article  ADS  Google Scholar 

  • Mishchenko, A. S., Prokof’ev, N. V., Sakamoto, A. & Svistunov, B. V. Diagrammatic quantum Monte Carlo study of the Fröhlich polaron. Phys. Rev. B 62, 6317 (2000).

    Article  ADS  Google Scholar 

  • Mishchenko, A. S. & Nagaosa, N. Quasidegenerate self-trapping in one-dimensional charge transfer exciton. Phys. Rev. Lett. 86, 4624 (2001).

    Article  ADS  Google Scholar 

  • Mishchenko, A. S., Nagaosa, N., Prokof’ev, N. V., Sakamoto, A. & Svistunov, B. V. Optical conductivity of the Fröhlich polaron. Phys. Rev. Lett. 91, 236401 (2003).

    Article  ADS  Google Scholar 

  • Marchand, D. J. J. et al. Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model. Phys. Rev. Lett. 105, 266605 (2010).

    Article  ADS  Google Scholar 

  • Mishchenko, A. S., Nagaosa, N. & Prokof’ev, N. Diagrammatic Monte Carlo method for many-polaron problems. Phys. Rev. Lett. 113, 166402 (2014).

    Article  ADS  Google Scholar 

  • Mishchenko, A. S., Nagaosa, N., De Filippis, G., de Candia, A. & Cataudella, V. Mobility of Holstein polaron at finite temperature: an unbiased approach. Phys. Rev. Lett. 114, 146401 (2015).

    Article  ADS  Google Scholar 

  • Hahn, T., Klimin, S., Tempere, J., Devreese, J. T. & Franchini, C. Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions. Phys. Rev. B 97, 134305 (2018).

    Article  ADS  Google Scholar 

  • Mishchenko, A. S. et al. Polaron mobility in the ‘beyond quasiparticles’ regime. Phys. Rev. Lett. 123, 076601 (2019).

    Article  ADS  Google Scholar 

  • Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, 2004).

  • Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

    Article  ADS  Google Scholar 

  • Zhou, J.-J. et al. Perturbo: a software package for ab initio electron-phonon interactions, charge transport and ultrafast dynamics. Comput. Phys. Commun. 264, 107970 (2021).

    Article  MathSciNet  Google Scholar 

  • Agapito, L. A. & Bernardi, M. Ab initio electron-phonon interactions using atomic orbital wave functions. Phys. Rev. B 97, 235146 (2018).

    Article  ADS  Google Scholar 

  • Kokott, S., Levchenko, S. V., Rinke, P. & Scheffler, M. First-principles supercell calculations of small polarons with proper account for long-range polarization effects. New J. Phys. 20, 033023 (2018).

    Article  ADS  Google Scholar 

  • Reticcioli, M., Diebold, U., Kresse, G. & Franchini, C. in Handbook of Materials Modeling 1–39 (Springer International Publishing, 2020).

  • Lee, N.-E., Chen, H.-Y., Zhou, J.-J. & Bernardi, M. Facile ab initio approach for self-localized polarons from canonical transformations. Phys. Rev. Mater. 5, 063805 (2021).

    Article  Google Scholar 

  • Luo, Y., Chang, B. K. & Bernardi, M. Comparison of the canonical transformation and energy functional formalisms for ab initio calculations of self-localized polarons. Phys. Rev. B 105, 155132 (2022).

    Article  ADS  Google Scholar 

  • Nery, J. P. et al. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: cumulants applied to the full first-principles theory and the Fröhlich polaron. Phys. Rev. B 97, 115145 (2018).

    Article  ADS  Google Scholar 

  • Zhou, J.-J. & Bernardi, M. Predicting charge transport in the presence of polarons: the beyond-quasiparticle regime in SrTiO3. Phys. Rev. Res. 1, 033138 (2019).

    Article  Google Scholar 

  • Lafuente-Bartolome, J. et al. Unified approach to polarons and phonon-induced band structure renormalization. Phys. Rev. Lett. 129, 076402 (2022).

    Article  ADS  Google Scholar 

  • Luo, Y., Desai, D., Chang, B. K., Park, J. & Bernardi, M. Data-driven compression of electron-phonon interactions. Phys. Rev. X 14, 021023 (2024).

    Google Scholar 

  • Kim, A. J., Werner, P. & Valentí, R. Alleviating the sign problem in quantum Monte Carlo simulations of spin-orbit-coupled multiorbital Hubbard models. Phys. Rev. B 101, 045108 (2020).

    Article  ADS  Google Scholar 

  • Bernardi, M. First-principles dynamics of electrons and phonons. Eur. Phys. J. B 89, 239 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  • Greitemann, J. & Pollet, L. Lecture notes on diagrammatic Monte Carlo for the Fröhlich polaron. SciPost Phys. Lect. Notes 2 (2018).

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  • Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  ADS  Google Scholar 

  • Franchini, C. & Ragni, S. Diagrammatic Monte Carlo study of the Holstein polaron, Master’s thesis, Università di Bologna (2020).

  • Allen, P. B. & Cardona, M. Theory of the temperature dependence of the direct gap of germanium. Phys. Rev. B 23, 1495 (1981).

    Article  ADS  Google Scholar 

  • Lihm, J.-M. & Park, C.-H. Phonon-induced renormalization of electron wave functions. Phys. Rev. B 101, 121102 (2020).

    Article  ADS  Google Scholar 

  • Ciuchi, S., de Pasquale, F., Fratini, S. & Feinberg, D. Dynamical mean-field theory of the small polaron. Phys. Rev. B 56, 4494 (1997).

    Article  ADS  Google Scholar 

  • Mahan, G. D. Many-Particle Physics 3rd edn (Springer, 2000).

  • Moser, S. et al. Tunable polaronic conduction in anatase TiO2. Phys. Rev. Lett. 110, 196403 (2013).

    Article  ADS  Google Scholar 

  • van Mechelen, J. L. M. et al. Electron-phonon interaction and charge carrier mass enhancement in SrTiO3. Phys. Rev. Lett. 100, 226403 (2008).

    Article  ADS  Google Scholar 

  • Geondzhian, A. et al. Large polarons as key quasiparticles in SrTio3 and SrTio3-based heterostructures. Phys. Rev. Lett. 125, 126401 (2020).

    Article  ADS  Google Scholar 

  • Verdi, C., Caruso, F. & Giustino, F. Origin of the crossover from polarons to Fermi liquids in transition metal oxides. Nat. Commun. 8, 15769 (2017).

    Article  ADS  Google Scholar 

  • Whitfield, G. & Puff, R. Weak-coupling theory of the polaron energy-momentum relation. Phys. Rev. 139, A338 (1965).

    Article  ADS  Google Scholar 

  • Goulko, O., Mishchenko, A. S., Pollet, L., Prokof’ev, N. & Svistunov, B. Numerical analytic continuation: answers to well-posed questions. Phys. Rev. B 95, 014102 (2017).

    Article  ADS  Google Scholar 

  • Zhang, S. X. et al. Niobium doped TiO2: intrinsic transparent metallic anatase versus highly resistive rutile phase. J. Appl. Phys. 102, 013701 (2007).

    Article  ADS  Google Scholar 

  • Birschitzky, V. C., Leoni, L., Reticcioli, M. & Franchini, C. Machine learning small polaron dynamics. Phys. Rev. Lett. 134, 216301 (2025).

    Article  MathSciNet  Google Scholar 

  • Fratini, S. & Ciuchi, S. Dynamical mean-field theory of transport of small polarons. Phys. Rev. Lett. 91, 256403 (2003).

    Article  ADS  Google Scholar 

  • Yagi, E., Hasiguti, R. R. & Aono, M. Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2–x. Phys. Rev. B 54, 7945 (1996).

    Article  ADS  Google Scholar 

  • Furubayashi, Y. et al. A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005).

    Article  ADS  Google Scholar 

  • Jeong, B.-S. et al. Properties of anatase CoxTi1−xO2 thin films epitaxially grown by reactive sputtering. Thin Solid Films 488, 194 (2005).

    Article  ADS  Google Scholar 

  • Kang, Y. & Peelaers, H. & Van de Walle, C. G. First-principles study of electron-phonon interactions and transport in anatase TiO2. Phys. Rev. B 100, 121113 (2019).

    Article  ADS  Google Scholar 

  • Lin, X. et al. Metallicity without quasi-particles in room-temperature strontium titanate. Appl. Phys. Lett. 2, 41 (2017).

    Google Scholar 

  • Setvin, M. et al. Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014).

    Article  ADS  Google Scholar 

  • Levy, R., LeBlanc, J. & Gull, E. Implementation of the maximum entropy method for analytic continuation. Comput. Phys. Commun. 215, 149 (2017).

    Article  ADS  Google Scholar 

  • Kas, J. J., Rehr, J. J. & Reining, L. Cumulant expansion of the retarded one-electron Green function. Phys. Rev. B 90, 085112 (2014).

    Article  ADS  Google Scholar 

  • Zhou, J.-J. et al. Ab initio electron-phonon interactions in correlated electron systems. Phys. Rev. Lett. 127, 126404 (2021).

    Article  ADS  Google Scholar 

  • Mitrić, P., Janković, V., Vukmirović, N. & Tanasković, D. Cumulant expansion in the Holstein model: spectral functions and mobility. Phys. Rev. B 107, 125165 (2023).

    Article  ADS  Google Scholar 

  • Stojanović, V. M., Bobbert, P. A. & Michels, M. A. J. Nonlocal electron-phonon coupling: consequences for the nature of polaron states. Phys. Rev. B 69, 144302 (2004).

    Article  ADS  Google Scholar 

  • Li, W., Ren, J. & Shuai, Z. A general charge transport picture for organic semiconductors with nonlocal electron-phonon couplings. Nat. Commun. 12, 4260 (2021).

    Article  ADS  Google Scholar 

  • Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  ADS  Google Scholar 

  • Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  • Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446 (2014).

    Article  Google Scholar 

  • Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys. Condens. Matter 31, 325902 (2019).

    Article  Google Scholar 

  • Bruneval, F. & Gonze, X. Accurate GW self-energies in a plane-wave basis using only a few empty states: towards large systems. Phys. Rev. B 78, 085125 (2008).

    Article  ADS  Google Scholar 

  • Baldini, E. et al. Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nat. Commun. 8, 13 (2017).

    Article  ADS  Google Scholar 

  • German, E., Faccio, R. & Mombrú, A. W. A DFT + U study on structural, electronic, vibrational and thermodynamic properties of TiO2 polymorphs and hydrogen titanate: tuning the Hubbard U-term. J. Phys. Commun. 1, 055006 (2017).

    Article  Google Scholar 

  • Traylor, J. G., Smith, H. G., Nicklow, R. M. & Wilkinson, M. K. Lattice dynamics of rutile. Phys. Rev. B 3, 3457 (1971).

    Article  ADS  Google Scholar 

  • Wehinger, B., Bosak, A. & Jochym, P. T. Soft phonon modes in rutile TiO2. Phys. Rev. B 93, 014303 (2016).

    Article  ADS  Google Scholar 

  • Monacelli, L. et al. The stochastic self-consistent harmonic approximation: calculating vibrational properties of materials with full quantum and anharmonic effects. J. Phys. Condens. Matter 33, 363001 (2021).

    Article  Google Scholar 

  • Zhou, J.-J., Hellman, O. & Bernardi, M. Electron-phonon scattering in the presence of soft modes and electron mobility in SrTiO3 perovskite from first principles. Phys. Rev. Lett. 121, 226603 (2018).

    Article  ADS  Google Scholar 

  • Verdi, C., Ranalli, L., Franchini, C. & Kresse, G. Quantum paraelectricity and structural phase transitions in strontium titanate beyond density functional theory. Phys. Rev. Mater. 7, L030801 (2023).

    Article  ADS  Google Scholar 

  • Verdi, C. & Giustino, F. Fröhlich electron-phonon vertex from first principles. Phys. Rev. Lett. 115, 176401 (2015).

    Article  ADS  Google Scholar 

  • Luo, Y., Park, J. & Bernardi, M. Dataset for first-principles diagrammatic Monte Carlo for electron-phonon interactions and polaron. Materials Cloud Archive https://doi.org/10.24435/materialscloud:zy-t3 (2025).

  • Read Entire Article