Fucoidans are senotherapeutics that enhance SIRT6-dependent DNA repair

4 months ago 3

  1. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217.
  2. Kennedy, B.K., Berger, S.L., Brunet, A., Campisi, J., Cuervo, A.M., Epel, E.S., Franceschi, C., Lithgow, G.J., Morimoto, R.I., Pessin, J.E., et al. (2014). Geroscience: linking aging to chronic disease. Cell 159, 709-713.
  3. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell 186, 243-278.
  4. Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621.
  5. Hernandez-Segura, A., Nehme, J., and Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends Cell Biol 28, 436-453.
  6. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367.
  7. Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99-118.
  8. Birch, J., and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes Dev 34, 1565-1576.
  9. Gorgoulis, V., Adams, P.D., Alimonti, A., Bennett, D.C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., et al. (2019). Cellular Senescence: Defining a Path Forward. Cell 179, 813-827.
  10. Wiley, C.D., and Campisi, J. (2021). The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 3, 1290-1301.
  11. Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B., Kirkland, J.L., and van Deursen, J.M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232-236.
  12. Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., A. Saltness, R., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A., et al. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184-189.
  13. Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21, 1424-1435.
  14. He, S., and Sharpless, N.E. (2017). Senescence in Health and Disease. Cell 169, 1000-1011.
  15. Wang, B., Wang, L., Gasek, N.S., Kuo, C.L., Nie, J., Kim, T., Yan, P., Zhu, J., Torrance, B.L., Zhou, Y., et al. (2024). Intermittent clearance of p21-highly-expressing cells extends lifespan and confers sustained benefits to health and physical function. Cell Metab 36, 1795-1805 e1796.
  16. Zhang, L., Pitcher, L.E., Yousefzadeh, M.J., Niedernhofer, L.J., Robbins, P.D., and Zhu, Y. (2022). Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest 132, e158450.
  17. Prasnikar, E., Borisek, J., and Perdih, A. (2020). Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 66, 101251.
  18. Zhang, L., Pitcher, L.E., Prahalad, V., Niedernhofer, L.J., and Robbins, P.D. (2023). Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J 290, 1362-1383.
  19. Zhang, L., Pitcher, L.E., Prahalad, V., Niedernhofer, L.J., and Robbins, P.D. (2021). Recent advances in the discovery of senolytics. Mech Ageing Dev 200, 111587.
  20. Borghesan, M., Hoogaars, W.M.H., Varela-Eirin, M., Talma, N., and Demaria, M. (2020). A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol 30, 777-791.
  21. Di Micco, R., Krizhanovsky, V., Baker, D., and d'Adda di Fagagna, F. (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22, 75-95.
  22. Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H., and Song, S. (2019). Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Marine Drugs 17, 183.
  23. Oliveira, C., Neves, N.M., Reis, R.L., Martins, A., and Silva, T.H. (2020). A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers 239, 116131.
  24. Apostolova, E., Lukova, P., Baldzhieva, A., Katsarov, P., Nikolova, M., Iliev, I., Peychev, L., Trica, B., Oancea, F., Delattre, C., et al. (2020). Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers (Basel) 12.
  25. Luthuli, S., Wu, S., Cheng, Y., Zheng, X., Wu, M., and Tong, H. (2019). Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar Drugs 17, 487.
  26. Jin, J.O., Chauhan, P.S., Arukha, A.P., Chavda, V., Dubey, A., and Yadav, D. (2021). The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar Drugs 19.
  27. Fitton, J.H., Stringer, D.N., Park, A.Y., and Karpiniec, S.S. (2019). Therapies from Fucoidan: New Developments. Marine Drugs 17, 571.
  28. Ale, M.T., Mikkelsen, J.D., and Meyer, A.S. (2011). Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds. Marine Drugs 9, 2106-2130.
  29. Morya, V.K., Kim, J., and Kim, E.-K. (2012). Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Applied Microbiology and Biotechnology 93, 71-82.
  30. Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G.E., Berman, A.E., Bilan, M.I., et al. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-552.
  31. Niedernhofer, L.J., Garinis, G.A., Raams, A., Lalai, A.S., Robinson, A.R., Appeldoorn, E., Odijk, H., Oostendorp, R., Ahmad, A., van Leeuwen, W., et al. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038.
  32. Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J., McGowan, S.J., Zhu, Y., Brooks, R.W., Grassi, D., Gregg, S.Q., Stripay, J.L., Dorronsoro, A., et al. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8, 422.
  33. Zhang, Y.Z., Naleway, J.J., Larison, K.D., Huang, Z.J., and Haugland, R.P. (1991). Detecting lacZ gene expression in living cells with new lipophilic, fluorogenic beta-galactosidase substrates. Faseb j 5, 3108-3113.
  34. Bruno, M.E.C., Mukherjee, S., Powell, W.L., Mori, S.F., Wallace, F.K., Balasuriya, B.K., Su, L.C., Stromberg, A.J., Cohen, D.A., and Starr, M.E. (2022). Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. GeroScience 44, 1761-1778.
  35. Gurkar, A.U., and Niedernhofer, L.J. (2015). Comparison of mice with accelerated aging caused by distinct mechanisms. Exp Gerontol 68, 43-50.
  36. Saul, D., Kosinsky, R.L., Atkinson, E.J., Doolittle, M.L., Zhang, X., LeBrasseur, N.K., Pignolo, R.J., Robbins, P.D., Niedernhofer, L.J., Ikeno, Y., et al. (2022). A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun 13, 4827.
  37. Rahnasto-Rilla, M.K., McLoughlin, P., Kulikowicz, T., Doyle, M., Bohr, V.A., Lahtela-Kakkonen, M., Ferrucci, L., Hayes, M., and Moaddel, R. (2017). The Identification of a SIRT6 Activator from Brown Algae Fucus distichus. Mar Drugs 15.
  38. Korotkov, A., Seluanov, A., and Gorbunova, V. (2021). Sirtuin 6: linking longevity with genome and epigenome stability. Trends Cell Biol 31, 994-1006.
  39. Guo, Z., Li, P., Ge, J., and Li, H. (2022). SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 13, 1787-1822.
  40. Chang, A.R., Ferrer, C.M., and Mostoslavsky, R. (2020). SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiol Rev 100, 145-169.
  41. Michishita, E., McCord, R.A., Boxer, L.D., Barber, M.F., Hong, T., Gozani, O., and Chua, K.F. (2009). Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8, 2664-2666.
  42. Michishita, E., McCord, R.A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T.L.A., Barrett, J.C., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492.
  43. Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., and Gorbunova, V. (2011). SIRT6 Promotes DNA Repair Under Stress by Activating PARP1. Science 332, 1443-1446.
  44. Cao, L., Lee, S.G., Lim, K.T., and Kim, H.-R. (2020). Potential Anti-Aging Substances Derived from Seaweeds. Marine Drugs 18, 564.
  45. Salekeen, R., Joydip, B., Rani, S.P., Didarul, I.K.M., Emdadul, I.M., Morsaline, B.M., and and Rahman, S.M.M. (2022). Marine phycocompound screening reveals a potential source of novel senotherapeutics. Journal of Biomolecular Structure and Dynamics 40, 6071-6085.
  46. Jackson, M.D., and Denu, J.M. (2002). Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. J Biol Chem 277, 18535-18544.
  47. Simon, M., Yang, J., Gigas, J., Earley, E.J., Hillpot, E., Zhang, L., Zagorulya, M., Tombline, G., Gilbert, M., Yuen, S.L., et al. (2022). A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J 41, e110393.
  48. Simon, M., Van Meter, M., Ablaeva, J., Ke, Z., Gonzalez, R.S., Taguchi, T., De Cecco, M., Leonova, K.I., Kogan, V., Helfand, S.L., et al. (2019). LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. Cell Metab 29, 871-885 e875.
  49. Imbs, T.I., Zvyagintseva, T.N., and Ermakova, S.P. (2020). Is the transformation of fucoidans in human body possible? International Journal of Biological Macromolecules 142, 778-781.
  50. Citkowska, A., Szekalska, M., and Winnicka, K. (2019). Possibilities of Fucoidan Utilization in the Development of Pharmaceutical Dosage Forms. Mar Drugs 17.
  51. Mao, Z., Seluanov, A., Jiang, Y., and Gorbunova, V. (2007). TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proceedings of the National Academy of Sciences 104, 13068-13073.
  52. Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V. (2008). Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7, 1765-1771.
  53. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550.
  54. Xu, S., Hu, E., Cai, Y., Xie, Z., Luo, X., Zhan, L., Tang, W., Wang, Q., Liu, B., Wang, R., et al. (2024). Using clusterProfiler to characterize multiomics data. Nature Protocols 19, 3292-3320.

Read Entire Article