- Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217.
- Kennedy, B.K., Berger, S.L., Brunet, A., Campisi, J., Cuervo, A.M., Epel, E.S., Franceschi, C., Lithgow, G.J., Morimoto, R.I., Pessin, J.E., et al. (2014). Geroscience: linking aging to chronic disease. Cell 159, 709-713.
- López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell 186, 243-278.
- Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621.
- Hernandez-Segura, A., Nehme, J., and Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends Cell Biol 28, 436-453.
- Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367.
- Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99-118.
- Birch, J., and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes Dev 34, 1565-1576.
- Gorgoulis, V., Adams, P.D., Alimonti, A., Bennett, D.C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., et al. (2019). Cellular Senescence: Defining a Path Forward. Cell 179, 813-827.
- Wiley, C.D., and Campisi, J. (2021). The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 3, 1290-1301.
- Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B., Kirkland, J.L., and van Deursen, J.M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232-236.
- Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., A. Saltness, R., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A., et al. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184-189.
- Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21, 1424-1435.
- He, S., and Sharpless, N.E. (2017). Senescence in Health and Disease. Cell 169, 1000-1011.
- Wang, B., Wang, L., Gasek, N.S., Kuo, C.L., Nie, J., Kim, T., Yan, P., Zhu, J., Torrance, B.L., Zhou, Y., et al. (2024). Intermittent clearance of p21-highly-expressing cells extends lifespan and confers sustained benefits to health and physical function. Cell Metab 36, 1795-1805 e1796.
- Zhang, L., Pitcher, L.E., Yousefzadeh, M.J., Niedernhofer, L.J., Robbins, P.D., and Zhu, Y. (2022). Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest 132, e158450.
- Prasnikar, E., Borisek, J., and Perdih, A. (2020). Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 66, 101251.
- Zhang, L., Pitcher, L.E., Prahalad, V., Niedernhofer, L.J., and Robbins, P.D. (2023). Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J 290, 1362-1383.
- Zhang, L., Pitcher, L.E., Prahalad, V., Niedernhofer, L.J., and Robbins, P.D. (2021). Recent advances in the discovery of senolytics. Mech Ageing Dev 200, 111587.
- Borghesan, M., Hoogaars, W.M.H., Varela-Eirin, M., Talma, N., and Demaria, M. (2020). A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol 30, 777-791.
- Di Micco, R., Krizhanovsky, V., Baker, D., and d'Adda di Fagagna, F. (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22, 75-95.
- Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H., and Song, S. (2019). Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Marine Drugs 17, 183.
- Oliveira, C., Neves, N.M., Reis, R.L., Martins, A., and Silva, T.H. (2020). A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers 239, 116131.
- Apostolova, E., Lukova, P., Baldzhieva, A., Katsarov, P., Nikolova, M., Iliev, I., Peychev, L., Trica, B., Oancea, F., Delattre, C., et al. (2020). Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers (Basel) 12.
- Luthuli, S., Wu, S., Cheng, Y., Zheng, X., Wu, M., and Tong, H. (2019). Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar Drugs 17, 487.
- Jin, J.O., Chauhan, P.S., Arukha, A.P., Chavda, V., Dubey, A., and Yadav, D. (2021). The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar Drugs 19.
- Fitton, J.H., Stringer, D.N., Park, A.Y., and Karpiniec, S.S. (2019). Therapies from Fucoidan: New Developments. Marine Drugs 17, 571.
- Ale, M.T., Mikkelsen, J.D., and Meyer, A.S. (2011). Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds. Marine Drugs 9, 2106-2130.
- Morya, V.K., Kim, J., and Kim, E.-K. (2012). Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Applied Microbiology and Biotechnology 93, 71-82.
- Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G.E., Berman, A.E., Bilan, M.I., et al. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-552.
- Niedernhofer, L.J., Garinis, G.A., Raams, A., Lalai, A.S., Robinson, A.R., Appeldoorn, E., Odijk, H., Oostendorp, R., Ahmad, A., van Leeuwen, W., et al. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038.
- Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J., McGowan, S.J., Zhu, Y., Brooks, R.W., Grassi, D., Gregg, S.Q., Stripay, J.L., Dorronsoro, A., et al. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8, 422.
- Zhang, Y.Z., Naleway, J.J., Larison, K.D., Huang, Z.J., and Haugland, R.P. (1991). Detecting lacZ gene expression in living cells with new lipophilic, fluorogenic beta-galactosidase substrates. Faseb j 5, 3108-3113.
- Bruno, M.E.C., Mukherjee, S., Powell, W.L., Mori, S.F., Wallace, F.K., Balasuriya, B.K., Su, L.C., Stromberg, A.J., Cohen, D.A., and Starr, M.E. (2022). Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. GeroScience 44, 1761-1778.
- Gurkar, A.U., and Niedernhofer, L.J. (2015). Comparison of mice with accelerated aging caused by distinct mechanisms. Exp Gerontol 68, 43-50.
- Saul, D., Kosinsky, R.L., Atkinson, E.J., Doolittle, M.L., Zhang, X., LeBrasseur, N.K., Pignolo, R.J., Robbins, P.D., Niedernhofer, L.J., Ikeno, Y., et al. (2022). A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun 13, 4827.
- Rahnasto-Rilla, M.K., McLoughlin, P., Kulikowicz, T., Doyle, M., Bohr, V.A., Lahtela-Kakkonen, M., Ferrucci, L., Hayes, M., and Moaddel, R. (2017). The Identification of a SIRT6 Activator from Brown Algae Fucus distichus. Mar Drugs 15.
- Korotkov, A., Seluanov, A., and Gorbunova, V. (2021). Sirtuin 6: linking longevity with genome and epigenome stability. Trends Cell Biol 31, 994-1006.
- Guo, Z., Li, P., Ge, J., and Li, H. (2022). SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 13, 1787-1822.
- Chang, A.R., Ferrer, C.M., and Mostoslavsky, R. (2020). SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiol Rev 100, 145-169.
- Michishita, E., McCord, R.A., Boxer, L.D., Barber, M.F., Hong, T., Gozani, O., and Chua, K.F. (2009). Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8, 2664-2666.
- Michishita, E., McCord, R.A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T.L.A., Barrett, J.C., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492.
- Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., and Gorbunova, V. (2011). SIRT6 Promotes DNA Repair Under Stress by Activating PARP1. Science 332, 1443-1446.
- Cao, L., Lee, S.G., Lim, K.T., and Kim, H.-R. (2020). Potential Anti-Aging Substances Derived from Seaweeds. Marine Drugs 18, 564.
- Salekeen, R., Joydip, B., Rani, S.P., Didarul, I.K.M., Emdadul, I.M., Morsaline, B.M., and and Rahman, S.M.M. (2022). Marine phycocompound screening reveals a potential source of novel senotherapeutics. Journal of Biomolecular Structure and Dynamics 40, 6071-6085.
- Jackson, M.D., and Denu, J.M. (2002). Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. J Biol Chem 277, 18535-18544.
- Simon, M., Yang, J., Gigas, J., Earley, E.J., Hillpot, E., Zhang, L., Zagorulya, M., Tombline, G., Gilbert, M., Yuen, S.L., et al. (2022). A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J 41, e110393.
- Simon, M., Van Meter, M., Ablaeva, J., Ke, Z., Gonzalez, R.S., Taguchi, T., De Cecco, M., Leonova, K.I., Kogan, V., Helfand, S.L., et al. (2019). LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. Cell Metab 29, 871-885 e875.
- Imbs, T.I., Zvyagintseva, T.N., and Ermakova, S.P. (2020). Is the transformation of fucoidans in human body possible? International Journal of Biological Macromolecules 142, 778-781.
- Citkowska, A., Szekalska, M., and Winnicka, K. (2019). Possibilities of Fucoidan Utilization in the Development of Pharmaceutical Dosage Forms. Mar Drugs 17.
- Mao, Z., Seluanov, A., Jiang, Y., and Gorbunova, V. (2007). TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proceedings of the National Academy of Sciences 104, 13068-13073.
- Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V. (2008). Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7, 1765-1771.
- Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550.
- Xu, S., Hu, E., Cai, Y., Xie, Z., Luo, X., Zhan, L., Tang, W., Wang, Q., Liu, B., Wang, R., et al. (2024). Using clusterProfiler to characterize multiomics data. Nature Protocols 19, 3292-3320.