Gene Drive: an alternative approach to malaria control?

4 months ago 6
  • Kamerow D. The world’s deadliest animal. BMJ 2014;348:g3258.

    PubMed  Google Scholar 

  • Bañuls AL, Thomas F, Renaud F. Of parasites and men. Infect Genet Evol. 2013;20:61–70.

    PubMed  Google Scholar 

  • Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Prim. 2017;3:17050.

    PubMed  Google Scholar 

  • Yee DA, Dean Bermond C, Reyes-Torres LJ, Fijman NS, Scavo NA, Nelsen J, et al. Robust network stability of mosquitoes and human pathogens of medical importance. Parasit Vectors. 2022;15:216 https://doi.org/10.1186/s13071-022-05333-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization. World malaria report 2020: 20 years of global progress and challenges. Switzerland: World Health Organization; 2020.

  • Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14:e0007831.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R, et al. Integrating vector control across diseases. BMC Med. 2015;13:249.

    PubMed  PubMed Central  Google Scholar 

  • Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, et al. Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS ONE. 2012;7:e31481.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130431.

    PubMed  PubMed Central  Google Scholar 

  • Benelli G, Beier JC. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91–6.

    PubMed  Google Scholar 

  • Sternberg ED, Ng’habi KR, Lyimo IN, Kessy ST, Farenhorst M, Thomas MB, et al. Eave tubes for malaria control in Africa: initial development and semi-field evaluations in Tanzania. Malar J. 2016;15:447.

    PubMed  PubMed Central  Google Scholar 

  • Billingsley P, Binka F, Chaccour C, Foy B, Gold S, Gonzalez-Silva M, et al. A roadmap for the development of ivermectin as a complementary malaria vector control tool. Am J Trop Med Hyg. 2020;102:3–24.

    PubMed  Google Scholar 

  • Burrows J, Slater H, Macintyre F, Rees S, Thomas A, Okumu F, et al. A discovery and development roadmap for new endectocidal transmission-blocking agents in malaria. Malar J. 2018;17:462.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaccour C, Hammann F, Rabinovich NR. Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar J. 2017;16:161.

    PubMed  PubMed Central  Google Scholar 

  • Khaligh FG, Jafari A, Silivanova E, Levchenko M, Rahimi B, Gholizadeh S. Endectocides as a complementary intervention in the malaria control program: a systematic review. Syst Rev. 2021;10:30.

    PubMed  PubMed Central  Google Scholar 

  • Beier JC, Müller GC, Gu W, Arheart KL, Schlein Y. Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms. Malar J. 2012;11:31.

    PubMed  PubMed Central  Google Scholar 

  • Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BGJ. Historical applications of induced sterilisation in field populations of mosquitoes. Malar J. 2009;8:S2.

    PubMed  PubMed Central  Google Scholar 

  • Maïga H, Damiens D, Niang A, Sawadogo SP, Fatherhaman O, Lees RS, et al. Mating competitiveness of sterile male Anopheles coluzzii in large cages. Malar J 2014;13:460.

    PubMed  PubMed Central  Google Scholar 

  • Munhenga G, Brooke BD, Gilles JRL, Slabbert K, Kemp A, Dandalo LC, et al. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasit Vectors. 2016;9:122.

    PubMed  PubMed Central  Google Scholar 

  • Alphey L. SIT 2.0: 21(st) Century genetic technology for the screwworm sterile-insect program. BMC Biol Engl. 2016;14:80.

    Google Scholar 

  • Gato R, Menéndez Z, Prieto E, Argilés R, Rodríguez M, Baldoquín W, et al. Sterile insect technique: successful suppression of an aedes aegypti field population in Cuba. Insects. 2021;12:469.

  • Tur C, Almenar D, Benlloch-Navarro S, Argilés-Herrero R, Zacarés M, Dalmau V, et al. Sterile insect technique in an integrated vector management program against tiger mosquito Aedes albopictus in the Valencia region (Spain): operating procedures and quality control parameters. Insects. 2021;12:272.

  • Bouyer J, Yamada H, Pereira R, Bourtzis K, Vreysen MJB. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 2020;36:325–36.

    PubMed  Google Scholar 

  • Oliva CF, Vreysen MJB, Dupé S, Lees RS, Gilles JRL, Gouagna LC, et al. Current status and future challenges for controlling malaria with the sterile insect technique: technical and social perspectives. Acta Trop. 2014;132:S130–9.

    PubMed  Google Scholar 

  • Mashatola T, Ndo C, Koekemoer LL, Dandalo LC, Wood OR, Malakoane L, et al. A review on the progress of sex-separation techniques for sterile insect technique applications against Anopheles arabiensis. Parasit Vectors. 2018;11:646. https://doi.org/10.1186/s13071-018-3219-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade G, Morrison N. Developing GM insects for sustainable pest control in agriculture and human health. BMC Proc. 2014;8:O43.

    PubMed Central  Google Scholar 

  • Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, et al. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA. 2011;108:4772–5.

    PubMed  PubMed Central  Google Scholar 

  • Labbé GMC, Scaife S, Morgan SA, Curtis ZH, Alphey L. Female-specific flightless (fsRIDL) phenotype for control of Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1724.

    PubMed  PubMed Central  Google Scholar 

  • Marinotti O, Jasinskiene N, Fazekas A, Scaife S, Fu G, Mattingly ST, et al. Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi. Malar J. 2013;12:142.

    PubMed  PubMed Central  Google Scholar 

  • Li M, Yang T, Bui M, Gamez S, Wise T, Kandul NP, et al. Suppressing mosquito populations with precision guided sterile males. Nat Commun. 2021;12:5374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002;298:129–49.

    CAS  PubMed  Google Scholar 

  • Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010;10:295–311.

    PubMed  PubMed Central  Google Scholar 

  • Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83. https://doi.org/10.1038/nbt.3439.

    Article  CAS  PubMed  Google Scholar 

  • Biessmann H, Nguyen QK, Le D, Walter MF. Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae. Insect Mol Biol. 2005;14:575–89.

    CAS  PubMed  Google Scholar 

  • Rinker DC, Zhou X, Pitts RJ, Rokas A, Zwiebel LJ. Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genom. 2013;14:749.

    CAS  Google Scholar 

  • Richman AM, Dimopoulos G, Seeley D, Kafatos FC. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. EMBO J. 1997;16:6114–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachou D, Kafatos FC. The complex interplay between mosquito positive and negative regulators of Plasmodium development. Curr Opin Microbiol. 2005;8:415–21.

    CAS  PubMed  Google Scholar 

  • Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, et al. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 1986;234:607–10.

    CAS  PubMed  Google Scholar 

  • Moreira LA, Wang J, Collins FH, Jacobs-Lorena M. Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development. Genetics 2004;166:1337–41.

    PubMed  PubMed Central  Google Scholar 

  • Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol. 2003;206:3809–16.

    PubMed  Google Scholar 

  • Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741–51.

    CAS  PubMed  Google Scholar 

  • Hancock PA, Sinkins SP, Godfray HCJ. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis. 2011;5:e1024.

    PubMed  PubMed Central  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science 2008;322:702.

    CAS  PubMed  Google Scholar 

  • O’Neill SL. The use of Wolbachia by the World Mosquito Program to interrupt transmission of Aedes aegypti transmitted viruses. Dengue and Zika: control and antiviral treatment strategies. In: Hilgenfeld R, Vasudevan SG, editors. Singapore: Springer Singapore; 2018. p. 355–60. Available from: https://doi.org/10.1007/978-981-10-8727-1_24

  • Gomes FM, Barillas-Mury C. Infection of anopheline mosquitoes with Wolbachia: implications for malaria control. PLoS Pathog. 2018;14:e1007333.

    PubMed  PubMed Central  Google Scholar 

  • Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, et al. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun. 2016;7:11772.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci USA. 2014;111:12498–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasit Vectors. 2020;13:414 https://doi.org/10.1186/s13071-020-04277-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams KL, Abernathy DG, Willett BC, Selland EK, Itoe MA, Catteruccia F. Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat Microbiol. 2021;6:1575–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization. Ethics and vector-borne diseases: WHO guidance. Geneva PP—Geneva: World Health Organization; 2020.

    Google Scholar 

  • World Health Organization. Guidance framework for testing genetically modified mosquitoes. 2nd ed. Geneva: World Health Organization; 2021. p. 196.

  • O’Meara WP, Mangeni JN, Steketee R, Greenwood B. Changes in the burden of malaria in sub-Saharan Africa. Lancet Infect Dis. 2010;10:545–55.

    PubMed  Google Scholar 

  • White SM, Rohani P, Sait SM. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol. 2010;47:1329–39.

    Google Scholar 

  • Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–6. https://doi.org/10.1038/nbt.4245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike A, Dong Y, Dizaji NB, Gacita A, Mongodin EF, Dimopoulos G. Changes in the microbiota cause genetically modified Anopheles to spread in a population. Science 2017;357:1396–9.

    CAS  PubMed  Google Scholar 

  • Alphey LS, Crisanti A, Randazzo FF, Akbari OS. Opinion: standardizing the definition of gene drive. Proc Natl Acad Sci USA. 2020;117:30864–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2003;270:921–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miles A, Harding NJ, Bottà G, Clarkson CS, Antão T, Kozak K, et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 2017;552:96–100.

    Google Scholar 

  • Durand PM, Naidoo K, Coetzer TL. Evolutionary patterning: a novel approach to the identification of potential drug target sites in Plasmodium falciparum. PLoS ONE. 2008;3:e3685.

  • Nolan T. Control of malaria-transmitting mosquitoes using gene drives. Philos Trans R Soc B. 2021;376:20190803.

    CAS  Google Scholar 

  • Carballar-Lejarazú R, Ogaugwu C, Tushar T, Kelsey A, Pham TB, Murphy J, et al. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proc Natl Acad Sci. 2020;117:22805–14. http://www.pnas.org/content/117/37/22805.abstract.

    PubMed  PubMed Central  Google Scholar 

  • North AR, Burt A, Godfray HCJ. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 2019;17:26 https://doi.org/10.1186/s12915-019-0645-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins CM, Bonds JAS, Quinlan MM, Mumford JD. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae sl, on interacting predators and competitors in local ecosystems. Med Vet Entomol. 2019;33:1–15.

    CAS  PubMed  Google Scholar 

  • Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 2017;13:e1007039.

    PubMed  PubMed Central  Google Scholar 

  • Nirmala X, James AA. Engineering Plasmodium-refractory phenotypes in mosquitoes. Trends Parasitol. 2003;19:384–7. https://www.sciencedirect.com/science/article/pii/S1471492203001880.

    PubMed  Google Scholar 

  • Rodgers FH, Gendrin M, Wyer CAS, Christophides GK. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog. 2017;13:e1006391.

    PubMed  PubMed Central  Google Scholar 

  • Hillyer JF. Mosquito immunity. Adv Exp Med Biol. 2010;708:218–38.

    CAS  PubMed  Google Scholar 

  • Clayton AM, Cirimotich CM, Dong Y, Dimopoulos G. Caudal is a negative regulator of the Anopheles IMD pathway that controls resistance to Plasmodium falciparum infection. Dev Comp Immunol. 2013;39:323–32.

    CAS  PubMed  Google Scholar 

  • Sinden RE, Strong K. An ultrastructural study of the sporogonic development of Plasmodium falciparum in Anopheles gambiae. Trans R Soc Trop Med Hyg. 1978;72:477–91.

    CAS  PubMed  Google Scholar 

  • Hurd H, Taylor PJ, Adams D, Underhill A, Eggleston P. Evaluating the costs of mosquito resistance to malaria parasites. Evolution 2005;59:2560–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carr AL, Rinker DC, Dong Y, Dimopoulos G, Zwiebel LJ. Transcriptome profiles of Anopheles gambiae harboring natural low-level Plasmodium infection reveal adaptive advantages for the mosquito. Sci Rep. 2021;11:22578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XRS, Bulger EA, Gantz VM, Klanseck C, Heimler SR, Auradkar A, et al. Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives. Mol Cell. 2020;80:246–62.e4. https://www.sciencedirect.com/science/article/pii/S1097276520306110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Luo L, Gao XJ. Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat Biotechnol U S. 2016;34:137–8.

    Google Scholar 

  • Taxiarchi C, Beaghton A, Don NI, Kyrou K, Gribble M, Shittu D, et al. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression. Nat Commun. 2021;12:3977 https://doi.org/10.1038/s41467-021-24214-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amato R, Taxiarchi C, Galardini M, Trusso A, Minuz RL, Grilli S, et al. Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages. Nat Commun. 2024;15:952 https://doi.org/10.1038/s41467-024-44907-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble C, Min J, Olejarz J, Buchthal J, Chavez A, Smidler AL, et al. Daisy-chain gene drives for the alteration of local populations. Proc Natl Acad Sci USA. 2019;116:8275–82. http://www.pnas.org/content/116/17/8275.abstract.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zapletal J, Najmitabrizi N, Erraguntla M, Lawley MA, Myles KM, Adelman ZN.Making gene drive biodegradable.Philos Trans R Soc B. 2021;376:20190804.

    Google Scholar 

  • Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015;9:e0003864.

    PubMed  PubMed Central  Google Scholar 

  • Subramaniam TSS, Lee HL, Ahmad NW, Murad S. Genetically modified mosquito: the Malaysian public engagement experience. Biotechnol J Ger. 2012;7:1323–7.

    CAS  Google Scholar 

  • Yao FA, Millogo AA, Epopa PS, North A, Noulin F, Dao K, et al. Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically modified sterile malaria mosquitoes. Nat Commun. 2022;13:796 https://doi.org/10.1038/s41467-022-28419-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltz E. First genetically modified mosquitoes released in the United States. Nat Engl. 2021;593:175–6.

    CAS  Google Scholar 

  • Schairer CE, Najera J, James AA, Akbari OS, Bloss CSOxitec. and MosquitoMate in the United States: lessons for the future of gene drive mosquito control. Pathog Glob Health. 2021;115:365–76.

    PubMed  PubMed Central  Google Scholar 

  • Hammond A, Pollegioni P, Persampieri T, North A, Minuz R, Trusso A, et al. Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Nat Commun. 2021;12:4589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takken W, Lindsay S. Increased threat of urban malaria from Anopheles stephensi mosquitoes. Afr Emerg Infect Dis J. 2019;25:1431 https://wwwnc.cdc.gov/eid/article/25/7/19-0301_article.

    Google Scholar 

  • Adolfi A, Gantz VM, Jasinskiene N, Lee HF, Hwang K, Terradas G, et al. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat Commun. 2020;11:5553.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM, Mondal A, et al. Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii. Proc Natl Acad Sci. 2023;120:e2221118120 https://doi.org/10.1073/pnas.2221118120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoermann A, Habtewold T, Selvaraj P, Del Corsano G, Capriotti P, Inghilterra MG, et al. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. Sci Adv. 2024;8:eabo1733 https://doi.org/10.1126/sciadv.abo1733.

    Article  CAS  Google Scholar 

  • Marshall JM, Taylor CE. Malaria control with transgenic mosquitoes. PLoS Med. 2009;6:e1000020.

    PubMed  PubMed Central  Google Scholar 

  • Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun. 1989;57:2628–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen MD, Quintana MDP, Ditlev SB, Bayarri-Olmos R, Ofori MF, Hviid L, et al. Evasion of classical complement pathway activation on Plasmodium falciparum-infected erythrocytes opsonized by PfEMP1-specific IgG. Front Immunol. 2018;9:3088.

    CAS  PubMed  Google Scholar 

  • Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog. 2011;7:e1002458.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, et al. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog. 2013;9:e1003790.

    PubMed  PubMed Central  Google Scholar 

  • Boulanger N, Bulet P, Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends Parasitol. 2006;22:262–8.

    CAS  PubMed  Google Scholar 

  • Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021;397:1809–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lancet T. Malaria vaccine approval: a step change for global health. Lancet. 2021;398:1381.

    Google Scholar 

  • Vogel G. The ‘do unto others’ malaria vaccine. Science. 1979;2010:847–8.

    Google Scholar 

  • Kapulu MC, Da DF, Miura K, Li Y, Blagborough AM, Churcher TS. et al. Comparative assessment of transmission-blocking vaccine candidates against Plasmodium falciparum. Sci Rep. 2015;11:11193.

    Google Scholar 

  • Healy SA, Anderson CF, Swihart BJ, Mwakingwe-Omari A, Gabriel EE, Decederfelt H, et al. Pfs230 yields higher malaria transmission-blocking vaccine activity than Pfs25 in humans but not mice. J Clin Investig. 2021;131:e146221.

  • Molina-Cruz A, Canepa GE, Alves e Silva TL, Williams AE, Nagyal S, Yenkoidiok-Douti L. et al. Plasmodium falciparum evades immunity of anopheline mosquitoes by interacting with a Pfs47 midgut receptor. Proc Natl Acad Sci. 2020;117:2597 LP–2605.

    Google Scholar 

  • Canepa GE, Molina-Cruz A, Yenkoidiok-Douti L, Calvo E, Williams AE, Burkhardt M, et al. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines. 2018;3:26.

    PubMed  PubMed Central  Google Scholar 

  • Osta MA, Christophides GK, Kafatos FC. Effects of mosquito genes on Plasmodium development. Science 2004;303:2030–2.

    CAS  PubMed  Google Scholar 

  • Volz J, Müller HM, Zdanowicz A, Kafatos FC, Osta MA. A genetic module regulates the melanization response of Anopheles to Plasmodium. Cell Microbiol. 2006;8:1392–405.

    CAS  PubMed  Google Scholar 

  • Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010;327:1644–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechts L, Chavatte JM, Snounou G, Koella JC. Environmental influence on the genetic basis of mosquito resistance to malaria parasites. Proc Biol Sci. 2006;273:1501–6.

    PubMed  PubMed Central  Google Scholar 

  • Wells MB, Andrew DJ. Anopheles Salivary gland architecture shapes Plasmodium sporozoite availability for transmission. MBio. 2019;27:10–1128.

  • Hoermann A, Tapanelli S, Capriotti P, Del Corsano G, Masters EK, Habtewold T, et al. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. Elife. 2021;10:e58791.

  • Jia N, Patel DJ. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol. 2021;22:563–79.

    CAS  PubMed  Google Scholar 

  • Meade L, Finnegan SR, Kad R, Fowler K, Pomiankowski A. Maintenance of fertility in the face of meiotic drive. Am Nat. 2020;195:743–51.

    PubMed  Google Scholar 

  • Bull JJ. Lethal gene drive selects inbreeding. Evol Med Public Health. 2016;2017:1–16.

    PubMed  PubMed Central  Google Scholar 

  • Bull JJ, Remien CH, Krone SM. Gene-drive-mediated extinction is thwarted by population structure and evolution of sib mating. Evol Med Public Health. 2019;2019:66–81.

    PubMed  PubMed Central  Google Scholar 

  • Champer J, Liu J, Oh SY, Reeves R, Luthra A, Oakes N, et al. Reducing resistance allele formation in CRISPR gene drive. Proc Natl Acad Sci. 2018;115:5522–7. https://doi.org/10.1073/pnas.1720354115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, et al. Resistance to natural and synthetic gene drive systems. J Evol Biol. 2020;33:1345–60. https://doi.org/10.1111/jeb.13693.

    Article  PubMed  PubMed Central  Google Scholar 

  • Champer SE, Oh SY, Liu C, Wen Z, Clark AG, Messer PW, et al. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci Adv. 2020;6:eaaz0525.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terradas G, Buchman AB, Bennett JB, Shriner I, Marshall JM, Akbari OS, et al. Inherently confinable split-drive systems in Drosophila. Nat Commun. 2021;12:1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond A, Karlsson X, Morianou I, Kyrou K, Beaghton A, Gribble M, et al. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet. 2021;17:e1009321. https://doi.org/10.1371/journal.pgen.1009321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchouakui M, Chiang MC, Ndo C, Kuicheu CK, Amvongo-Adjia N, Wondji MJ, et al. A marker of glutathione S-transferase-mediated resistance to insecticides is associated with higher Plasmodium infection in the African malaria vector Anopheles funestus. Sci Rep. 2019;9:5772.

    PubMed  PubMed Central  Google Scholar 

  • Ndiath MO, Cailleau A, Diedhiou SM, Gaye A, Boudin C, Richard V, et al. Effects of the kdr resistance mutation on the susceptibility of wild Anopheles gambiae populations to Plasmodium falciparum: a hindrance for vector control. Malar J. 2014;13:340.

    PubMed  PubMed Central  Google Scholar 

  • Garcia G, de A, Sylvestre G, Aguiar R, da Costa GB, Martins AJ, et al. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Negl Trop Dis. 2019;13:e0007023.

    PubMed  PubMed Central  Google Scholar 

  • Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet. 2008;4:e1000291. https://doi.org/10.1371/journal.pgen.1000291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature. 2011;473:212–5. https://doi.org/10.1038/nature09937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A, Burt A, et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014;5:3977 https://doi.org/10.1038/ncomms4977.

    Article  CAS  PubMed  Google Scholar 

  • Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci. 2015;112:E6736–43. http://www.pnas.org/content/112/49/E6736.abstract

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Bui M, Yang T, Bowman CS, White BJ, Akbari OS. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti. Proc Natl Acad Sci. 2017;114:E10540–49. http://www.pnas.org/content/114/49/E10540.abstract.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Akbari OS, White BJ. Highly efficient site-specific mutagenesis in malaria mosquitoes using CRISPR. G3 (Bethesda). 2018;8:653–8.

    CAS  PubMed  Google Scholar 

  • Pham TB, Phong CH, Bennett JB, Hwang K, Jasinskiene N, Parker K, et al. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet. 2019;15:e1008440 https://doi.org/10.1371/journal.pgen.1008440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macias VM, McKeand S, Chaverra-Rodriguez D, Hughes GL, Fazekas A, Pujhari S. et al. Cas9-mediated gene-editing in the malaria mosquito Anopheles stephensi by ReMOT control. G3 (Bethesda). 2020;10:1353–60.

    CAS  PubMed  Google Scholar 

  • Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. Elife 2020;9:e51701. https://pubmed.ncbi.nlm.nih.gov/31960794.

    PubMed  PubMed Central  Google Scholar 

  • O’Leary S, Adelman ZN. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Negl Trop Dis. 2020;14:e0008971.

    PubMed  PubMed Central  Google Scholar 

  • Purusothaman DK, Shackleford L, Anderson MAE, Harvey-Samuel T, Alphey L. CRISPR/Cas-9 mediated knock-in by homology dependent repair in the West Nile Virus vector Culex quinquefasciatus Say. Sci Rep. 2021;11:14964 https://doi.org/10.1038/s41598-021-94065-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn C, Anthousi A, Wondji C, Nolan T. CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus. G3 (Bethesda). 2021;11:jkab201.

  • Green EI, Jaouen E, Klug D, Proveti Olmo R, Gautier A, Blandin S, et al. A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes. Elife. 2023;12:e93142. Available from: https://doi.org/10.7554/eLife.93142.

  • Curtis CF. Possible use of translocations to fix desirable genes in insect pest populations. Nature 1968;218:368–9.

    CAS  PubMed  Google Scholar 

  • Laven H, Cousserans J, Guille G. Eradicating mosquitoes using translocations: a first field experiment. Nature 1972;236:456–7.

    CAS  PubMed  Google Scholar 

  • Lorimer N, Hallinan E, Rai KS. Translocation homozygotes in the yellow fever mosquito, Aedes aegypti. J Hered. 1972;63:158–66.

    CAS  PubMed  Google Scholar 

  • Rabbani MG, Kitzmiller JB. Chromosomal translocations in Anopheles albimanus Wiedemann. Mosquito News. 1972;32:421–32.

  • Pearson A, Wood J. Combining the meiotic drive gene D and the translocation T1 in the mosquito Aedes aegypti (L.). 1. Sex ratio distortion and fertility. Genetica. 1980;51:203–10.

  • Carballar-Lejarazú R, Tushar T, Pham TB, James AA. Cas9-mediated maternal effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae. Genetics. 2022;221:iyac055.

  • Read Entire Article