HunyuanWorld-Mirror: Universal 3D World Reconstruction with Any-Prior Prompting

3 days ago 1

中文阅读

HunyuanWorld-Mirror Teaser

HunyuanWorld-Mirror is a versatile feed-forward model for comprehensive 3D geometric prediction. It integrates diverse geometric priors (camera poses, calibrated intrinsics, depth maps) and simultaneously generates various 3D representations (point clouds, multi-view depths, camera parameters, surface normals, 3D Gaussians) in a single forward pass.

demo_en_20mb.mp4
  • [Oct 22, 2025]: We release the inference code and model weights. Download.

Join our Wechat and Discord group to discuss and find help from us.

☯️ HunyuanWorld-Mirror Introduction

HunyuanWorld-Mirror consists of two key components:

(1) Multi-Modal Prior Prompting: A mechanism that embeds diverse prior modalities, including calibrated intrinsics, camera pose, and depth, into the feed-forward model. Given any subset of the available priors, we utilize several lightweight encoding layers to convert each modality into structured tokens.

(2) Universal Geometric Prediction: A unified architecture capable of handling the full spectrum of 3D reconstruction tasks from camera and depth estimation to point map regression, surface normal estimation, and novel view synthesis.

🛠️ Dependencies and Installation

We recommend using CUDA version 12.4 for the manual installation.

# 1. Clone the repository git clone https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror cd HunyuanWorld-Mirror # 2. Create conda environment conda create -n hunyuanworld-mirror python=3.10 cmake=3.14.0 -y conda activate hunyuanworld-mirror # 3. Install PyTorch and other dependencies using conda # For CUDA 12.4 conda install pytorch=2.4.0 torchvision pytorch-cuda=12.4 nvidia/label/cuda-12.4.0::cuda-toolkit -c pytorch -c nvidia -y # 4. Install pip dependencies pip install -r requirements.txt # 5. Install gsplat for 3D Gaussian Splatting rendering # For CUDA 12.4 pip install gsplat --index-url https://docs.gsplat.studio/whl/pt24cu124

We provide a Gradio demo for the HunyuanWorld-Mirror model for quick start.

HunyuanWorld-Mirror Gradio Demo

Try our online demo without installation: 🤗 Hugging Face Demo

# 1. Install requirements for gradio demo pip install -r requirements_demo.txt # 2. Launch gradio demo locally python app.py

📦 Download Pretrained Models

To download the HunyuanWorld-Mirror model, first install the huggingface-cli:

python -m pip install "huggingface_hub[cli]"

Then download the model using the following commands:

huggingface-cli download tencent/HunyuanWorld-Mirror --local-dir ./ckpts

Note: For inference, the model weights will be automatically downloaded from Hugging Face when running the inference scripts, so you can skip this manual download step if preferred.

🚀 Inference with Images & Priors

from pathlib import Path import numpy as np import torch from src.models.models.worldmirror import WorldMirror from src.utils.inference_utils import extract_load_and_preprocess_images # --- Setup --- device = 'cuda' if torch.cuda.is_available() else 'cpu' model = WorldMirror.from_pretrained("tencent/HunyuanWorld-Mirror").to(device) # --- Load Data --- # Load a sequence of N images into a tensor inputs = {} inputs['img'] = extract_load_and_preprocess_images( Path("path/to/your/data"), # video or directory containing images fps=1, # fps for extracing frames from video target_size=518 ).to(device) # [1,N,3,H,W], in [0,1] # -- Load Priors (Optional) -- # Configure conditioning flags and prior paths cond_flags = [0, 0, 0] # [camera_pose, depth, intrinsics] prior_data = { 'camera_pose': None, # Camera pose tensor [1, N, 4, 4] 'depthmap': None, # Depth map tensor [1, N, H, W] 'camera_intrinsics': None # Camera intrinsics tensor [1, N, 3, 3] } for idx, (key, data) in enumerate(prior_data.items()): if data is not None: cond_flags[idx] = 1 inputs[key] = data # --- Inference --- with torch.no_grad(): predictions = model(views=inputs, cond_flags=cond_flags)
Click to view output format
# Geometry outputs pts3d_preds, pts3d_conf = predictions["pts3d"][0], predictions["pts3d_conf"][0] # 3D point cloud in world coordinate: [S, H, W, 3] and point confidence: [S, H, W] depth_preds, depth_conf = predictions["depth"][0], predictions["depth_conf"][0] # Z-depth in camera frame: [S, H, W, 1] and depth confidence: [S, H, W] normal_preds, normal_conf = predictions["normals"][0], predictions["normals_conf"][0] # Surface normal in camera coordinate: [S, H, W, 3] and normal confidence: [S, H, W] # Camera outputs camera_poses = predictions["camera_poses"][0] # Camera-to-world poses (OpenCV convention): [S, 4, 4] camera_intrs = predictions["camera_intrs"][0] # Camera intrinsic matrices: [S, 3, 3] camera_params = predictions["camera_params"][0] # Camera vector: [S, 9] (translation, quaternion rotation, fov_v, fov_u) # 3D Gaussian Splatting outputs splats = predictions["splats"] means = splats["means"][0].reshape(-1, 3) # Gaussian means: [N, 3] opacities = splats["opacities"][0].reshape(-1) # Gaussian opacities: [N] scales = splats["scales"][0].reshape(-1, 3) # Gaussian scales: [N, 3] quats = splats["quats"][0].reshape(-1, 4) # Gaussian quaternions: [N, 4] sh = splats["sh"][0].reshape(-1, 1, 3) # Gaussian spherical harmonics: [N, 1, 3]

Where:

  • S is the number of input views
  • H, W are the height and width of input images
  • N is the number of 3D Gaussians

Inference with More Functions

For advanced usage, see infer.py which provides additional features:

  • Save predictions: point clouds, depth maps, normals, camera parameters, and 3D Gaussian Splatting
  • Visualize outputs: depth maps, surface normals, and 3D point clouds
  • Render novel views using 3D Gaussians
  • Export 3D Gaussian Splatting results and camera parameters to COLMAP format

🎯 Post 3DGS Optimization (Optional)

cd submodules/gsplat/examples # install example requirements pip install -r requirements.txt # install pycolmap2 by rmbrualla git clone https://github.com/rmbrualla/pycolmap.git cd pycolmap # in pyproject.toml, rename name = "pycolmap" to name = "pycolmap2" vim pyproject.toml # rename folder pycolmap to pycolmap2 mv pycolmap/ pycolmap2/ python3 -m pip install -e .

First, run infer.py with --save_colmap and --save_gs flags to generate COLMAP format initialization:

python infer.py --input_path /path/to/your/input --output_path /path/to/your/output --save_colmap --save_gs

The reconstruction result (camera parameters, 3D points, and 3D Gaussians) will be saved under /path/to/your/output, such as:

output/ ├── images/ # Input images ├── sparse/ │ └── 0/ │ ├── cameras.bin # Camera intrinsics │ ├── images.bin # Camera poses │ └── points3D.bin # 3D points └── gaussians.ply # 3D Gaussian Splatting initialization

Then, run the optimization script:

python submodules/gsplat/examples/simple_trainer_worldmirror.py default --data_factor 1 --data_dir /path/to/your/inference_output --result_dir /path/to/your/gs_optimization_output

HunyuanWorld-Mirror achieves state-of-the-art performance across multiple 3D perception tasks, surpassing feed-forward 3D reconstruction methods. It demonstrates superior performance in point cloud reconstruction, camera pose estimation, surface normal prediction, novel view rendering and depth estimation. Incorporating 3D priors, such as camera poses, depth, or intrinsics, plays a crucial role in enhancing performance across these tasks. For point cloud reconstruction and novel view synthesis tasks, the performance is as follows:

Point cloud reconstruction

Method 7-Scenes NRGBD DTU
Acc. ⬇ Comp. ⬇ Acc. ⬇ Comp. ⬇ Acc. ⬇ Comp. ⬇
Fast3R 0.096 0.145 0.135 0.163 3.340 2.929
CUT3R 0.094 0.101 0.104 0.079 4.742 3.400
VGGT 0.046 0.057 0.051 0.066 1.338 1.896
π³ 0.048 0.072 0.026 0.028 1.198 1.849
HunyuanWorld-Mirror 0.043 0.049 0.041 0.045 1.017 1.780
+ Intrinsics 0.042 0.048 0.041 0.045 0.977 1.762
+ Depths 0.038 0.039 0.032 0.031 0.831 1.022
+ Camera Poses 0.023 0.036 0.029 0.032 0.990 1.847
+ All Priors 0.018 0.023 0.016 0.014 0.735 0.935
Method Re10K DL3DV
PSNR ⬆ SSIM ⬆ LPIPS ⬇ PSNR ⬆ SSIM ⬆ LPIPS ⬇
FLARE 16.33 0.574 0.410 15.35 0.516 0.591
AnySplat 17.62 0.616 0.242 18.31 0.569 0.258
HunyuanWorld-Mirror 20.62 0.706 0.187 20.92 0.667 0.203
+ Intrinsics 22.03 0.765 0.165 22.08 0.723 0.175
+ Camera Poses 20.84 0.713 0.182 21.18 0.674 0.197
+ Intrinsics + Camera Poses 22.30 0.774 0.155 22.15 0.726 0.174

Boost of Geometric Priors

For the other tasks, refer to the technique report for detailed performance comparisons.

  • Inference Code
  • Model Checkpoints
  • Technical Report
  • Gradio Demo
  • Evaluation Code
  • Training Code

If you find HunyuanWorld-Mirror useful for your research and applications, please cite using this BibTeX:

@article{liu2025worldmirror, title={WorldMirror: Universal 3D World Reconstruction with Any-Prior Prompting}, author={Liu, Yifan and Min, Zhiyuan and Wang, Zhenwei and Wu, Junta and Wang, Tengfei and Yuan, Yixuan and Luo, Yawei and Guo, Chunchao}, journal={arXiv preprint arXiv:2510.10726}, year={2025} }

Please send emails to [email protected] if there is any question.

We would like to thank HunyuanWorld. We also sincerely thank the authors and contributors of VGGT, Fast3R, CUT3R, and DUSt3R for their outstanding open-source work and pioneering research.

Read Entire Article