[Submitted on 15 Sep 2025]
Authors:Andy Zhai, Brae Liu, Bruno Fang, Chalse Cai, Ellie Ma, Ethan Yin, Hao Wang, Hugo Zhou, James Wang, Lights Shi, Lucy Liang, Make Wang, Qian Wang, Roy Gan, Ryan Yu, Shalfun Li, Starrick Liu, Sylas Chen, Vincent Chen, Zach Xu
We introduce WALL-OSS, an end-to-end embodied foundation model that leverages large-scale multimodal pretraining to achieve (1) embodiment-aware vision-language understanding, (2) strong language-action association, and (3) robust manipulation capability.
Our approach employs a tightly coupled architecture and multi-strategies training curriculum that enables Unified Cross-Level CoT-seamlessly unifying instruction reasoning, subgoal decomposition, and fine-grained action synthesis within a single differentiable framework.
Our results show that WALL-OSS attains high success on complex long-horizon manipulations, demonstrates strong instruction-following capabilities, complex understanding and reasoning, and outperforms strong baselines, thereby providing a reliable and scalable path from VLMs to embodied foundation models.
Submission history
From: Hao Wang [view email]
[v1]
Mon, 15 Sep 2025 10:40:27 UTC (13,134 KB)