[Submitted on 10 Oct 2025]
Abstract:In this paper, we introduce Narrative Learning, a methodology where models are defined entirely in natural language and iteratively refine their classification criteria using explanatory prompts rather than traditional numerical optimisation. We report on experiments to evaluate the accuracy and potential of this approach using 3 synthetic and 3 natural datasets and compare them against 7 baseline explainable machine learning models. We demonstrate that on 5 out of 6 of these datasets, Narrative Learning became more accurate than the baseline explainable models in 2025 or earlier because of improvements in language models. We also report on trends in the lexicostatistics of these models' outputs as a proxy for the comprehensibility of the explanations.Submission history
From: Greg Baker [view email]
[v1]
Fri, 10 Oct 2025 07:34:40 UTC (390 KB)
.png)

