Mapping human thalamocortical connectivity with electrical stimulation recording

3 months ago 1
  • Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

    PubMed  Google Scholar 

  • Shine, J. M., Lewis, L. D., Garrett, D. D. & Hwang, K. The impact of the human thalamus on brain-wide information processing. Nat. Rev. Neurosci. 24, 416–430 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–2330 (2004).

    PubMed  Google Scholar 

  • Ojeda Valencia, G. et al. Signatures of electrical stimulation driven network interactions in the human limbic system. J. Neurosci. 43, 6697–6711 (2023).

    PubMed  PubMed Central  Google Scholar 

  • Miller, K. J., Muller, K. R. & Hermes, D. Basis profile curve identification to understand electrical stimulation effects in human brain networks. PLoS Comput. Biol. 17, e1008710 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jedynak, M. et al. Variability of single pulse electrical stimulation responses recorded with intracranial electroencephalography in epileptic patients. Brain Topogr. 36, 119–127 (2023).

    PubMed  Google Scholar 

  • Wu, T. Q. et al. Multisite thalamic recordings to characterize seizure propagation in the human brain. Brain 146, 2792–2802 (2023).

    PubMed  PubMed Central  Google Scholar 

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

    PubMed  Google Scholar 

  • Stieger, J. R. et al. Cross-regional coordination of activity in the human brain during autobiographical self-referential processing. Proc. Natl Acad. Sci. USA 121, e2316021121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Call, C. L. & Bergles, D. E. Cortical neurons exhibit diverse myelination patterns that scale between mouse brain regions and regenerate after demyelination. Nat. Commun. 12, 4767 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golden, E. C., Graff-Radford, J., Jones, D. T. & Benarroch, E. E. Mediodorsal nucleus and its multiple cognitive functions. Neurology 87, 2161–2168 (2016).

    PubMed  Google Scholar 

  • Togo, M. et al. Distinct connectivity patterns in human medial parietal cortices: evidence from standardized connectivity map using cortico-cortical evoked potential. Neuroimage 263, 119639 (2022).

    PubMed  Google Scholar 

  • Groppe, D. M. et al. Dominant frequencies of resting human brain activity as measured by the electrocorticogram. Neuroimage 79, 223–233 (2013).

    PubMed  Google Scholar 

  • Hacker, C. D., Snyder, A. Z., Pahwa, M., Corbetta, M. & Leuthardt, E. C. Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage 149, 446–457 (2017).

    PubMed  Google Scholar 

  • Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601 (2001).

    CAS  PubMed  Google Scholar 

  • Groenewegen, H. J. & Berendse, H. W. The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci. 17, 52–57 (1994).

    CAS  PubMed  Google Scholar 

  • Fisher, R. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 899–908 (2010).

    PubMed  Google Scholar 

  • Castro-alamancos, M. A. & Connors, B. W. Thalamocortical synapses. Prog. Neurobiol. 51, 581–606 (1997).

    CAS  PubMed  Google Scholar 

  • Gray, C. M. Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1, 11–38 (1994).

    CAS  PubMed  Google Scholar 

  • Timofeev, I. & Chauvette, S. Thalamocortical oscillations: local control of EEG slow waves. Curr. Top. Med. Chem. 11, 2457–2471 (2011).

    CAS  PubMed  Google Scholar 

  • Jasper, H. Diffuse projection systems: the integrative action of the thalamic reticular system. Electroencephalogr. Clin. Neurophysiol. 1, 405–420 (1949).

    CAS  PubMed  Google Scholar 

  • Engel, J. Jr. & Pitkanen, A. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 167, 107735 (2020).

    CAS  PubMed  Google Scholar 

  • Caciagli, L., Bernhardt, B. C., Hong, S.-J., Bernasconi, A. & Bernasconi, N. Functional network alterations and their structural substrate in drug-resistant epilepsy. Front. Neurosci. 8, 411 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Fleury, M. et al. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia 63, 2597–2622 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittau, F., Grova, C., Moeller, F., Dubeau, F. & Gotman, J. Patterns of altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia 53, 1013–1023 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Roger, E. et al. Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network. Hum. Brain Mapp. 41, 779–796 (2020).

    PubMed  Google Scholar 

  • Li, L. et al. Topographical reorganization of brain functional connectivity during an early period of epileptogenesis. Epilepsia 62, 1231–1243 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Mazrooyisebdani, M. et al. Graph theory analysis of functional connectivity combined with machine learning approaches demonstrates widespread network differences and predicts clinical variables in temporal lobe epilepsy. Brain Connect. 10, 39–50 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Ofer, I. et al. Association between seizure freedom and default mode network reorganization in patients with unilateral temporal lobe epilepsy. Epilepsy Behav. 90, 238–246 (2019).

    PubMed  Google Scholar 

  • Liao, W. et al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum. Brain Mapp. 32, 883–895 (2011).

    PubMed  Google Scholar 

  • Widjaja, E., Zamyadi, M., Raybaud, C., Snead, O. C. & Smith, M. L. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy. AJNR Am. J. Neuroradiol. 34, 2386–2392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. et al. Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci. Lett. 458, 97–101 (2009).

    CAS  PubMed  Google Scholar 

  • McGinn, R. et al. Ictal involvement of the pulvinar and the anterior nucleus of the thalamus in patients with refractory epilepsy. Neurology 103, e210039 (2024).

    PubMed  Google Scholar 

  • Buzsaki, G. Rhythms of the Brain (Oxford University Press, 2006).

  • Penttonen, M. & Buzsáki, G. Natural logarithmic relationship between brain oscillators. Thalamus Relat. Syst. 2, 145–152 (2003).

    Google Scholar 

  • Steriade, M. Impact of network activities on neuronal properties in corticothalamic systems. J. Neurophysiol. 86, 1–39 (2001).

    CAS  PubMed  Google Scholar 

  • Miller, K. J., Sorensen, L. B., Ojemann, J. G. & Den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    CAS  PubMed  Google Scholar 

  • Keller, C. J. et al. Mapping human brain networks with cortico-cortical evoked potentials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130528 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Veit, M. J. et al. Temporal order of signal propagation within and across intrinsic brain networks. Proc. Natl Acad. Sci. USA 118, e2105031118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seguin, C. et al. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 111, 1391–1401 (2023).

    CAS  PubMed  Google Scholar 

  • Guo, Z. H. et al. Epileptogenic network of focal epilepsies mapped with cortico-cortical evoked potentials. Clin. Neurophysiol. 131, 2657–2666 (2020).

    PubMed  Google Scholar 

  • Kunieda, T., Yamao, Y., Kikuchi, T. & Matsumoto, R. New approach for exploring cerebral functional connectivity: review of cortico-cortical evoked potential. Neurol. Med. Chir. (Tokyo) 55, 374–382 (2015).

    PubMed  Google Scholar 

  • Keller, C. J. et al. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc. Natl Acad. Sci. USA 108, 10308–10313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arthuis, M. et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132, 2091–2101 (2009).

    PubMed  Google Scholar 

  • Guye, M. et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129, 1917–1928 (2006).

    PubMed  Google Scholar 

  • Pizzo, F. et al. The ictal signature of thalamus and basal ganglia in focal epilepsy: a SEEG study. Neurology 96, e280–e293 (2021).

    CAS  PubMed  Google Scholar 

  • Filipescu, C. et al. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia 60, e25–e30 (2019).

    CAS  PubMed  Google Scholar 

  • Evangelista, E. et al. Does the thalamo-cortical synchrony play a role in seizure termination? Front Neurol. 6, 192 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Gadot, R., Korst, G., Shofty, B., Gavvala, J. R. & Sheth, S. A. Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. J. Neurosurg. 137, 1210–1225 (2022).

    PubMed  Google Scholar 

  • Ilyas, A., Tandon, N. & Lhatoo, S. D. Thalamic neuromodulation for epilepsy: a clinical perspective. Epilepsy Res. 183, 106942 (2022).

    PubMed  Google Scholar 

  • Chaitanya, G. et al. Robot-assisted stereoelectroencephalography exploration of the limbic thalamus in human focal epilepsy: implantation technique and complications in the first 24 patients. Neurosurg. Focus 48, E2 (2020).

    PubMed  Google Scholar 

  • Romeo, A. et al. Early ictal recruitment of midline thalamus in mesial temporal lobe epilepsy. Ann. Clin. Transl. Neurol. 6, 1552–1558 (2019).

    PubMed  PubMed Central  Google Scholar 

  • McKhann, G. M. Editorial. Dulling the double-edged sword of human SEEG research. Neurosurg. Focus 48, E3 (2020).

    PubMed  Google Scholar 

  • Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    PubMed  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 62, 782–790 (2012).

    PubMed  Google Scholar 

  • Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    CAS  PubMed  Google Scholar 

  • Papademetris, X. et al. BioImage suite: an integrated medical image analysis suite: an update. Insight J. 2006, 209 (2006).

    PubMed  PubMed Central  Google Scholar 

  • Groppe, D. M. et al. iELVis: an open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J. Neurosci. Methods 281, 40–48 (2017).

    CAS  PubMed  Google Scholar 

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2020).

  • McInnes, L. et al. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).

    Google Scholar 

  • Lyu, D. Causal cortical and thalamic connections in the human brain. Zenodo https://doi.org/10.5281/zenodo.15330862 (2025).

  • Read Entire Article