Mathematical Analysis for School Students (1980)

4 months ago 4

ysis. It includes material covering all sections of mathematical

analysis taught at the secondary school level. The book ex-

exponential and logarithmic functions. The integral is pre-

under a graph, and as the limit of finite sums. At the end of

the book, exercises are provided for each section.

but on computational technique.

study mathematical analysis.

Translated from the Russian and Typeset by Damitr Mazanav.

Preface v

1 The Derivative 1

The Derivative and the Tangent . . . . . . . . . 2

Continuity of a Function . . . . . . . . . . . . . 13

2 Computing the Derivative of a Polynomial 15

3 Maximum and Minimum 23

Positivity and Negativity of the Derivative . . 24

Maximum and Minimum . . . . . . . . . . . . 26

Rolle’s Theorem . . . . . . . . . . . . . . . . . . 28

Lagrange’s Formula of Finite Increments of a

Function . . . . . . . . . . . . . . . . . . . 30

The Second Derivative . . . . . . . . . . . . . . 33

Distinguishing Between a Maximum and a

Minimum . . . . . . . . . . . . . . . . . . 34

4 Study Of Functions 36

Inflection Point . . . . . . . . . . . . . . . . . . 42

Exercises . . . . . . . . . . . . . . . . . . . . . . 46

5 Derivatives of Trigonometric Functions 49

Derivative of a Product and a Quotient . . . . 53

The Derivative of tan x function . . . . . . . . . 55

Derivative of a Composite Function . . . . . . 56

Inverse Function . . . . . . . . . . . . . . . . . . 58

Derivative of a Rational Power of x. . . . . . . 62

6 Indefinite Integral 65

7 Definite Integral 75

Definite Integral as the Limit of a Sequence of Finite Sums . . . . . . . . . . . . . . . . . 82

8 Postulate of Convergence 85

Postulate of Convergence . . . . . . . . . . . . 88

9 Newton’s Binomial and the Sum of a Geometric Progression 92

Newton’s Binomial . . . . . . . . . . . . . . . . 92

Sum of a Geometric Progression . . . . . . . . 96

10 The Function e^x 98

Study of the Function ωn(x). . . . . . . . . . . 99

Case |x| 1 . . . . . . . . . . . . . . . . . . . . 102

Fundamental Property of the Function exp(x) 105

The Number e and the Function exp x. . . . . 108

The Derivative of the Function exp x . . . . . . . . 110

11 The Function ln x 112

12 Expansion of the Function ex into a Series 114

13 Epilogue: On the Theory of Limits 117

The Theory of Limits . . . . . . . . . . . . . . . 118

Continuous Functions . . . . . . . . . . . . . . 122

14 Exercises 124

Section 1 . . . . . . . . . . . . . . . . . . . . . . 124

Section 2 . . . . . . . . . . . . . . . . . . . . . . 128

Section 3 . . . . . . . . . . . . . . . . . . . . . . 128

Section 4 . . . . . . . . . . . . . . . . . . . . . . 130

Section 5 . . . . . . . . . . . . . . . . . . . . . . 137

Section 6 . . . . . . . . . . . . . . . . . . . . . . 145

Section 7 . . . . . . . . . . . . . . . . . . . . . . 151

Section 8 . . . . . . . . . . . . . . . . . . . . . . 154

Section 10 . . . . . . . . . . . . . . . . . . . . . 155

Section 11 . . . . . . . . . . . . . . . . . . . . . 156

Section 13 . . . . . . . . . . . . . . . . . . . . . 159

Read Entire Article