References
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).
Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017: Special Focus on Inequalities (World Health Organization, 2019).
Serdeczny, O. et al. Climate change impacts in sub-Saharan Africa: from physical changes to their social repercussions. Reg. Environ. Change 17, 1585–1600 (2017).
Song, W., Zheng, Z., Alawadhi, A. H. & Yaghi, O. M. MOF water harvester produces water from Death Valley desert air in ambient sunlight. Nat. Water 1, 626–634 (2023).
Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).
Kim, H. et al. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).
Guo, Y. et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 13, 2761 (2022).
Lu, H. et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34, 2205344 (2022).
Guan, W., Lei, C., Guo, Y., Shi, W. & Yu, G. Hygroscopic‐microgels‐enabled rapid water extraction from arid air. Adv. Mater. 36, 2207786 (2022).
Zhong, Y. et al. Bridging materials innovations to sorption-based atmospheric water harvesting devices. Nat. Rev. Mater. 9, 681–698 (2024).
Li, T. et al. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023).
Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).
Tang, J. et al. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels. ACS Appl. Mater. Interfaces 12, 18504–18511 (2020).
LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).
Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7, eabf3978 (2021).
Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).
Deng, F., Wang, C., Xiang, C. & Wang, R. Bioinspired topological design of super-hygroscopic complex for cost-effective atmospheric water harvesting. Nano Energy 90, 106642 (2021).
Shan, H. et al. All-day multicyclic atmospheric water harvesting enabled by polyelectrolyte hydrogel with hybrid desorption mode. Adv. Mater. 35, 2302038 (2023).
Yu, Z. et al. Bio-inspired core-shell structural aerogel with programmable water release capacity for efficient solar thermoelectricity-freshwater cogeneration. Matter 6, 3509–3525 (2023).
Saleth, R. M. Water scarcity and climatic change in India: the need for water demand and supply management. Hydrol. Sci. J. 56, 671–686 (2011).
Lindsey, B. D., Belitz, K., Cravotta, C. A. III, Toccalino, P. L. & Dubrovsky, N. M. Lithium in groundwater used for drinking-water supply in the United States. Sci. Total Environ. 767, 144691 (2021).
Li, X. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018).
Li, R. et al. Hybrid hydrogel with high water vapor-harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 52, 11367–11377 (2018).
Koutsoyiannis, D. Clausius–Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice. Eur. J. Phys. 33, 295–305 (2012).
C. Liu, et al. Broadband thermal management using smart cooling films. Joule https://doi.org/10.2139/ssrn.4315402 (2023).
Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
Zhu, L., Raman, A. P. & Fan, S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl Acad. Sci. USA 112, 12282–12287 (2015).
Edalatpour, M., Liu, L., Jacobi, A., Eid, K. & Sommers, A. Managing water on heat transfer surfaces: a critical review of techniques to modify surface wettability for applications with condensation or evaporation. Appl. Energy 222, 967–992 (2018).
Wang, Y. et al. Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 3, 100879 (2022).
Entezari, A., Ejeian, M. & Wang, R. Extraordinary air water harvesting performance with three phase sorption. Mater. Today Energy 13, 362–373 (2019).
Ejeian, M., Entezari, A. & Wang, R. Solar powered atmospheric water harvesting with enhanced LiCl/MgSO4/ACF composite. Appl. Therm. Eng. 176, 115396 (2020).
Xu, J. et al. Efficient solar‐driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. 59, 5202–5210 (2020).
Wu, S. et al. Poly(vinyl alcohol) hydrogels with broad‐range tunable mechanical properties via the Hofmeister effect. Adv. Mater. 33, 2007829 (2021).
Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).
Tu, Y. et al. Plausible photomolecular effect leading to water evaporation exceeding the thermal limit. Proc. Natl Acad. Sci. USA 120, e2312751120 (2023).
Li, M. et al. Reducing heat conduction enhances the photothermal efficiency of upcycled adsorbents. Adv. Funct. Mater. 33, 2209987 (2023).
Hong, S. et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 10, 28517–28524 (2018).
Shi, Y. et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018).
Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020).
Hao, X. et al. Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water 1, 982–991 (2023).
Spark, W. Historical Weather during 2021 at Ouarzazate Airport, Morocco. Weather Spark https://weatherspark.com/h/y/147691/2021/Historical-Weather-during-2021-at-Ouarzazate-Airport-Morocco (2021).
Howard, G. et al. Domestic Water Quantity, Service Level and Health (World Health Organization, 2020).
Liu, C. et al. Data for the plots in Figures 1–4. Figshare https://doi.org/10.6084/m9.figshare.28730096.v2 (2025).