Metre-scale origami hydrogel for water harvesting in Death Valley

6 hours ago 1

References

  1. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017: Special Focus on Inequalities (World Health Organization, 2019).

  4. Serdeczny, O. et al. Climate change impacts in sub-Saharan Africa: from physical changes to their social repercussions. Reg. Environ. Change 17, 1585–1600 (2017).

    Article  Google Scholar 

  5. Song, W., Zheng, Z., Alawadhi, A. H. & Yaghi, O. M. MOF water harvester produces water from Death Valley desert air in ambient sunlight. Nat. Water 1, 626–634 (2023).

  6. Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim, H. et al. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, Y. et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 13, 2761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu, H. et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34, 2205344 (2022).

    Article  CAS  Google Scholar 

  10. Guan, W., Lei, C., Guo, Y., Shi, W. & Yu, G. Hygroscopic‐microgels‐enabled rapid water extraction from arid air. Adv. Mater. 36, 2207786 (2022).

  11. Zhong, Y. et al. Bridging materials innovations to sorption-based atmospheric water harvesting devices. Nat. Rev. Mater. 9, 681–698 (2024).

  12. Li, T. et al. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023).

  13. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Tang, J. et al. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels. ACS Appl. Mater. Interfaces 12, 18504–18511 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).

    Article  CAS  Google Scholar 

  16. Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7, eabf3978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deng, F., Wang, C., Xiang, C. & Wang, R. Bioinspired topological design of super-hygroscopic complex for cost-effective atmospheric water harvesting. Nano Energy 90, 106642 (2021).

    Article  CAS  Google Scholar 

  19. Shan, H. et al. All-day multicyclic atmospheric water harvesting enabled by polyelectrolyte hydrogel with hybrid desorption mode. Adv. Mater. 35, 2302038 (2023).

    Article  CAS  Google Scholar 

  20. Yu, Z. et al. Bio-inspired core-shell structural aerogel with programmable water release capacity for efficient solar thermoelectricity-freshwater cogeneration. Matter 6, 3509–3525 (2023).

    Article  CAS  Google Scholar 

  21. Saleth, R. M. Water scarcity and climatic change in India: the need for water demand and supply management. Hydrol. Sci. J. 56, 671–686 (2011).

    Article  Google Scholar 

  22. Lindsey, B. D., Belitz, K., Cravotta, C. A. III, Toccalino, P. L. & Dubrovsky, N. M. Lithium in groundwater used for drinking-water supply in the United States. Sci. Total Environ. 767, 144691 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Li, X. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018).

    Article  CAS  Google Scholar 

  24. Li, R. et al. Hybrid hydrogel with high water vapor-harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 52, 11367–11377 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Koutsoyiannis, D. Clausius–Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice. Eur. J. Phys. 33, 295–305 (2012).

    Article  Google Scholar 

  26. C. Liu, et al. Broadband thermal management using smart cooling films. Joule https://doi.org/10.2139/ssrn.4315402 (2023).

  27. Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, L., Raman, A. P. & Fan, S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl Acad. Sci. USA 112, 12282–12287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Edalatpour, M., Liu, L., Jacobi, A., Eid, K. & Sommers, A. Managing water on heat transfer surfaces: a critical review of techniques to modify surface wettability for applications with condensation or evaporation. Appl. Energy 222, 967–992 (2018).

    Article  Google Scholar 

  30. Wang, Y. et al. Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 3, 100879 (2022).

  31. Entezari, A., Ejeian, M. & Wang, R. Extraordinary air water harvesting performance with three phase sorption. Mater. Today Energy 13, 362–373 (2019).

    Article  Google Scholar 

  32. Ejeian, M., Entezari, A. & Wang, R. Solar powered atmospheric water harvesting with enhanced LiCl/MgSO4/ACF composite. Appl. Therm. Eng. 176, 115396 (2020).

    Article  CAS  Google Scholar 

  33. Xu, J. et al. Efficient solar‐driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. 59, 5202–5210 (2020).

    Article  CAS  Google Scholar 

  34. Wu, S. et al. Poly(vinyl alcohol) hydrogels with broad‐range tunable mechanical properties via the Hofmeister effect. Adv. Mater. 33, 2007829 (2021).

    Article  CAS  Google Scholar 

  35. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  36. Tu, Y. et al. Plausible photomolecular effect leading to water evaporation exceeding the thermal limit. Proc. Natl Acad. Sci. USA 120, e2312751120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, M. et al. Reducing heat conduction enhances the photothermal efficiency of upcycled adsorbents. Adv. Funct. Mater. 33, 2209987 (2023).

    Article  CAS  Google Scholar 

  38. Hong, S. et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 10, 28517–28524 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, Y. et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018).

    Article  CAS  Google Scholar 

  40. Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hao, X. et al. Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water 1, 982–991 (2023).

    Article  CAS  Google Scholar 

  42. Spark, W. Historical Weather during 2021 at Ouarzazate Airport, Morocco. Weather Spark https://weatherspark.com/h/y/147691/2021/Historical-Weather-during-2021-at-Ouarzazate-Airport-Morocco (2021).

  43. Howard, G. et al. Domestic Water Quantity, Service Level and Health (World Health Organization, 2020).

  44. Liu, C. et al. Data for the plots in Figures 1–4. Figshare https://doi.org/10.6084/m9.figshare.28730096.v2 (2025).

Download references

Read Entire Article