Have you heard of “vibe physics”?
The phrase “vibe coding” came first. People have been using large language models like ChatGPT to write computer code (and not the way I did last year). They chat with the model, describing what they want to do and asking the model to code it up. You can guess the arguments around this, from people who are convinced AI is already better than a human programmer to people sure the code will be riddled with errors and vulnerabilities.
Now, there are people claiming not only to do vibe coding, but vibe physics: doing theoretical physics by chatting with an AI.
I think we can all agree that’s a lot less plausible. Some of the people who do vibe coding actually know how to code, but I haven’t seen anyone claiming to do vibe physics who actually understands physics. They’re tech entrepreneurs in the most prominent cases, random people on the internet otherwise. And while a lot of computer code is a minor tweak on something someone has already done, theoretical physics doesn’t work that way: if someone has already come up with your idea, you’re an educator, not a physicist.
Still, I think there is something to keep in mind about the idea of “vibe physics”, related to where physics comes from.
Here’s a question to start with: go back a bit before the current chat-bot boom. There were a ton of other computational and mathematical tools. Theorem-proving software could encode almost arbitrary mathematical statements in computer code and guarantee their accuracy. Statistical concepts like Bayes’ rule described how to reason from evidence to conclusions, not flawlessly but as well as anyone reliably can. We had computer simulations for a wealth of physical phenomena, and approximation schemes for many others.
With all those tools, why did we still have human physicists?
That is, go back before ChatGPT, before large language models. Why not just code up a program that starts with the evidence and checks which mathematical model fits it best?
In principle, I think you really could have done that. But you could never run that program. It would take too long.
Doing science 100% correctly and reliably is agonizingly slow, and prohibitively expensive. You cannot check every possible model, nor can you check those models against all the available data. You must simplify your problem, somehow, even if it makes your work less reliable, and sometimes incorrect.
And for most of history, humans have provided that simplification.
A physicist isn’t going to consider every possible model. They’re going to consider models that are similar to models they studied, or similar to models others propose. They aren’t going to consider all the evidence. They’ll look at some of the evidence, the evidence other physicists are talking about and puzzled by. They won’t simulate the consequences of their hypotheses in exhaustive detail. Instead, they’ll guess, based on their own experience, a calculation that captures what they expect to be relevant.
Human physicists provided the unreliable part of physics, the heuristics. The “vibe physics”, if you will.
AI is also unreliable, also heuristic. But humans still do this better than AI.
Part of the difference is specificity. These AIs are trained on all of human language, and then perhaps fine-tuned on a general class of problems. A human expert has spent their life fine-tuning on one specific type of problem, and their intuitions, their heuristics, their lazy associations and vibes, all will be especially well-suited to problems of that type.
Another part of the difference, though, is scale.
When you talk to ChatGPT, it follows its vibes into paragraphs of text. If you turn on reasoning features, you make it check its work in the background, but it still is generating words upon words inside, evaluating those words, then generating more.
I suspect, for a physicist, the “control loop” is much tighter. Many potential ideas get ruled out a few words in. Many aren’t even expressed in words at all, just concepts. A human physicist is ultimately driven by vibes, but they check and verify those vibes, based on their experience, at a much higher frequency than any current AI system can achieve.
(I know almost nothing about neuroscience. I’m just basing this on what it can feel like, to grope through a sentence and have it assemble itself as it goes into something correct, rather than having to go back and edit it.)
As companies get access to bigger datacenters, I suspect they’ll try to make this loop tighter, to get AI to do something closer to what (I suspect, it appears) humans do. And then maybe AI will be able to do vibe physics.
Even then, though, you should not do vibe physics with the AI.
If you look at the way people describe doing vibe physics, they’re not using the AI for the vibes. They’re providing the vibes, and the AI is supposed to check things.
And that, I can confidently say, is completely ass-backwards. The AI is a vibe machine, it is great at vibes. Substituting your vibes will just make it worse. On the other hand, the AI is awful at checking things. It can find published papers sometimes, which can help you check something. But it is not set up to do the math, at least not unless the math can be phrased as a simple Python script or an IMO problem. In order to do anything like that, it has to call another type of software to verify. And you could have just used that software.
Theoretical physics is still not something everyone can do. Proposing a crackpot theory based on a few papers you found on Google and a couple YouTube videos may make you feel less confident than proposing a crackpot theory based on praise from ChatGPT and a list of papers it claims have something to do with your idea, which makes it more tempting. But it’s still proposing a crackpot theory. If you want to get involved, there’s still no substitute for actually learning how physics works.
.png)
