Multi-octave frequency comb nanophotonic parametric oscillator

2 hours ago 2
  • Carlson, D. R. et al. Ultrafast electro-optic light with subcycle control. Science 361, 1358–1363 (2018).

    Article  ADS  Google Scholar 

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article  Google Scholar 

  • Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  • Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article  ADS  Google Scholar 

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  • Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  • Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  • Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article  ADS  Google Scholar 

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  Google Scholar 

  • Lesko, D. M. B. et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photon. 15, 281–286 (2021).

    Article  ADS  Google Scholar 

  • Elu, U. et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat. Photon. 15, 277–280 (2021).

    Article  ADS  Google Scholar 

  • Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article  ADS  Google Scholar 

  • Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  • Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018).

    Article  ADS  Google Scholar 

  • Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article  ADS  Google Scholar 

  • Chang, C.-I. Hyperspectral Imaging (Springer, 2003).

  • Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

    Article  ADS  Google Scholar 

  • Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).

    Article  ADS  Google Scholar 

  • Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  • Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  ADS  Google Scholar 

  • Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  ADS  Google Scholar 

  • Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    Article  ADS  Google Scholar 

  • Wu, T.-H. et al. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat. Photon. 18, 218–223 (2024).

    Article  ADS  Google Scholar 

  • Oh, D. Y. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2017).

    Article  ADS  Google Scholar 

  • Ludwig, M. et al. Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic lithium niobate waveguides. Nat. Commun. 15, 7614 (2024).

    Article  Google Scholar 

  • Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  • Vasilyev, S. et al. Multi-octave visible to long-wave IR femtosecond continuum generated in Cr:ZnS-GaSe tandem. Opt. Express 27, 16405–16412 (2019).

    Article  ADS  Google Scholar 

  • Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  Google Scholar 

  • Anderson, M. H. et al. Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica 8, 771–779 (2021).

    Article  ADS  Google Scholar 

  • Anderson, M. H. et al. Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. 13, 4764 (2022).

    Article  ADS  Google Scholar 

  • Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  ADS  Google Scholar 

  • McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  • Marandi, A., Leindecker, N. C., Pervak, V., Byer, R. L. & Vodopyanov, K. L. Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. Opt. Express 20, 7255–7262 (2012).

    Article  ADS  Google Scholar 

  • Marandi, A., Ingold, K. A., Jankowski, M. & Byer, R. L. Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared. Optica 3, 324–327 (2016).

    Article  ADS  Google Scholar 

  • Sun, J. H., Gale, B. J. S. & Reid, D. T. Composite frequency comb spanning 0.4–2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator. Opt. Lett. 32, 1414–1416 (2007).

    Article  ADS  Google Scholar 

  • Roy, A. et al. Temporal walk-off induced dissipative quadratic solitons. Nat. Photon. 16, 162–168 (2022).

    Article  ADS  Google Scholar 

  • Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303–308 (2022).

    Article  ADS  Google Scholar 

  • Roy, A. et al. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nat. Commun. 14, 6549 (2023).

    Article  ADS  Google Scholar 

  • Ledezma, L. et al. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv. 9, eadf9711 (2023).

    Article  Google Scholar 

  • Hamerly, R. et al. Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators. Phys. Rev. A 94, 063809 (2016).

    Article  ADS  Google Scholar 

  • Ning, C., Feng, X., Heng, J. & Zhang, Z. Supercontinuum generation from a quasi-stationary doubly resonant optical parametric oscillator. Opt. Lett. 46, 4280–4283 (2021).

    Article  ADS  Google Scholar 

  • Suret, P., Lefranc, M., Derozier, D., Zemmouri, J. & Bielawski, S. Fast oscillations in an optical parametric oscillator. Opt. Commun. 200, 369–379 (2001).

    Article  ADS  Google Scholar 

  • Leidinger, M. et al. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range. Opt. Express 23, 21690–21705 (2015).

    Article  ADS  Google Scholar 

  • Okawachi, Y. et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica 7, 702–707 (2020).

    Article  ADS  Google Scholar 

  • Yu, M., Desiatov, B., Okawachi, Y., Gaeta, A. L. & Lončar, M. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett. 44, 1222–1225 (2019).

    Article  ADS  Google Scholar 

  • Carlson, D. R. et al. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies. Phys. Rev. Appl. 8, 014027 (2017).

    Article  ADS  Google Scholar 

  • Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).

    Article  ADS  Google Scholar 

  • Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    Article  ADS  Google Scholar 

  • Weng, W. et al. Gain-switched semiconductor laser driven soliton microcombs. Nat. Commun. 12, 1425 (2021).

    Article  ADS  Google Scholar 

  • Xu, Y. et al. Harmonic and rational harmonic driving of microresonator soliton frequency combs. Optica 7, 940–946 (2020).

    Article  ADS  Google Scholar 

  • Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  • Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photon. 10, 415–419 (2016).

    Article  ADS  Google Scholar 

  • Devgan, P.S. et al. 10-GHz dispersion-managed soliton fiber-optical parametric oscillator using regenerative mode-locking.Opt. Lett. 30, 528–530 (2005). erratum 30, 1743. (2005).

    Article  ADS  Google Scholar 

  • Roy, A., Nehra, R., Langrock, C., Fejer, M. & Marandi, A. Non-equilibrium spectral phase transitions in coupled nonlinear optical resonators. Nat. Phys. 19, 427–434 (2023).

    Article  Google Scholar 

  • Ingold, K. A., Marandi, A., Digonnet, M. J. F. & Byer, R. L. Fiber-feedback optical parametric oscillator for half-harmonic generation of sub-100-fs frequency combs around 2 μm. Opt. Lett. 40, 4368–4371 (2015).

    Article  ADS  Google Scholar 

  • Langrock, C. & Fejer, M. M. Fiber-feedback continuous-wave and synchronously-pumped singly-resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides. Opt. Lett. 32, 2263–2265 (2007).

    Article  ADS  Google Scholar 

  • Sharping, J. E., Fiorentino, M., Kumar, P. & Windeler, R. S. Optical parametric oscillator based on four-wave mixing in microstructure fiber. Opt. Lett. 27, 1675–1677 (2002).

    Article  ADS  Google Scholar 

  • Deng, Y., Lin, Q., Lu, F., Agrawal, G. P. & Knox, W. H. Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. Opt. Lett. 30, 1234–1236 (2005).

    Article  ADS  Google Scholar 

  • Sharping, J. E. et al. Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators. Opt. Express 15, 1474–1479 (2007).

    Article  ADS  Google Scholar 

  • Gao, M., Lüpken, N. M., Boller, K.-J. & Fallnich, C. Optical parametric oscillator based on silicon nitride waveguides. In Optica Advanced Photonics Congress 2022, Technical Digest Series JTh4A.3 (Optica Publishing Group, 2022).

  • Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).

    Article  ADS  Google Scholar 

  • Heckl, O. H. et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs. Opt. Lett. 41, 5405–5408 (2016).

    Article  ADS  Google Scholar 

  • Reid, D. T., Kennedy, G. T., Miller, A., Sibbett, W. & Ebrahimzadeh, M. Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4. IEEE J. Sel. Topics Quantum Electron. 4, 238–248 (1998).

    Article  ADS  Google Scholar 

  • Sekine, R., Gray, R., Ledezma, L., Guo, Q. & Marandi, A. Sync-pumped femtosecond OPO based on dispersion-engineered nanophotonic PPLN with 3-octave spectrum. In Conference on Lasers and Electro-Optics (CLEO) 2022 SM5K.2 (Optica Publishing Group, 2022).

  • Li, J. et al. Efficiency of pulse pumped soliton microcombs. Optica 9, 231–239 (2022).

    Article  ADS  Google Scholar 

  • Burr, K. C., Tang, C. L., Arbore, M. A. & Fejer, M. M. Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate. Opt. Lett. 22, 1458–1460 (1997).

    Article  ADS  Google Scholar 

  • Sekine, R. Multi-octave frequency comb from an ultra-low-threshold nanophotonic parametric oscillator. figshare https://figshare.com/s/a9e01f7ca865c5dfd390 (2025).

  • Ledezma, L. snow: Simulator for nonlinear optical waveguides. GitHub https://github.com/ledezmaluism/snow (2025).

  • Read Entire Article