Erlanson, D. A., Davis, B. J. & Jahnke, W. Fragment-based drug discovery: advancing fragments in the absence of crystal structures. Cell Chem. Biol. 26, 9–15 (2019). Demonstrates the feasibility of advancing fragment hits without crystal structures, emphasizing alternative strategies for structure generation.
Schneider, H. J. Binding mechanisms in supramolecular complexes. Angew. Chem. Int Ed. Engl. 48, 3924–3977 (2009).
Bissantz, C., Kuhn, B. & Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med Chem. 53, 5061–5084 (2010).
Ferreira de Freitas, R. & Schapira, M. A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm 8, 1970–1981 (2017).
Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).
Chayen, N. E. Tackling the bottleneck of protein crystallization in the post-genomic era. Trends Biotechnol. 20, 98 (2002).
Otting, G., Liepinsh, E. & Wuthrich, K. Protein hydration in aqueous solution. Science 254, 974–980 (1991).
Hudson, K. L. et al. Carbohydrate-aromatic interactions in proteins. J. Am. Chem. Soc. 137, 15152–15160 (2015).
Schiro, A. et al. On the complementarity of X-ray and NMR data. J. Struct. Biol. X 4, 100019 (2020).
Ferenczy, G. G. & Keseru, G. M. Thermodynamics of fragment binding. J. Chem. Inf. Model 52, 1039–1045 (2012).
Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov. 14, 95–110 (2015).
Fox, J. M., Zhao, M., Fink, M. J., Kang, K. & Whitesides, G. M. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu Rev. Biophys. 47, 223–250 (2018).
Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).
Diercks, T., Coles, M. & Kessler, H. Applications of NMR in drug discovery. Curr. Opin. Chem. Biol. 5, 285–291 (2001).
Stockman, B. J. & Dalvit, C. NMR screening techniques in drug discovery and drug design. Prog. Nucl. Magn. Reson. Spectrosc. 41, 187–231 (2002).
Pellecchia, M., Sem, D. S. & Wuthrich, K. NMR in drug discovery. Nat. Rev. Drug Discov. 1, 211–219 (2002).
Meyer, B. & Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int Ed. Engl. 42, 864–890 (2003).
Larda, S. T. et al. Robust Strategy for Hit-to-Lead Discovery: NMR for SAR. J. Med Chem. 66, 13416–13427 (2023).
Gossert, A. D. & Jahnke, W. NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. Prog. Nucl. Magn. Reson Spectrosc. 97, 82–125 (2016).
Scheiner, S. Assessment of the Presence and Strength of H-Bonds by Means of Corrected NMR. Molecules 21, 1426 (2016).
Herschlag, D. & Pinney, M. M. Hydrogen Bonds: Simple after All. Biochemistry 57, 3338–3352 (2018).
Beier, A. et al. Probing Protein–Ligand Methyl−π Interaction Geometries through Chemical Shift Measurements of Selectively Labeled Methyl Groups. J. Medicinal Chem. 67, 13187–13196 (2024). Establishes chemical shift measurements as a quantitative tool to detect and characterize methyl–π interactions in protein-ligand complexes.
Platzer, G. et al. PI by NMR: Probing CH-pi Interactions in Protein-Ligand Complexes by NMR Spectroscopy. Angew. Chem. Int Ed. Engl. 59, 14861–14868 (2020). Introduces a method to directly detect CH–π interactions via NMR, enabling spatial orientation of ligands based on proton chemical shifts.
Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. The Magnitude of the CH/π Interaction between Benzene and Some Model Hydrocarbons. J. Am. Chem. Soc. 122, 3746–3753 (2000).
Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. Origin of attraction and directionality of the pi/pi interaction: model chemistry calculations of benzene dimer interaction. J. Am. Chem. Soc. 124, 104–112 (2002).
Wendler, K., Thar, J., Zahn, S. & Kirchner, B. Estimating the hydrogen bond energy. J. Phys. Chem. A 114, 9529–9536 (2010).
Freire, E. Do enthalpy and entropy distinguish first in class from best in class. Drug Discov. Today 13, 869–874 (2008).
Brünger, A. T. X-ray crystallography and NMR reveal complementary views of structure and dynamics. Nat Struct Biol 4 Suppl, 862–865 (1997). Shows that NMR captures dynamic behavior of biomolecules not observable by crystallography, highlighting their complementary nature.
Rinaldelli, M. et al. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. Acta Crystallogr. Sect. D. 70, 958–967 (2014).
van den Bedem, H. & Fraser, J. S. Integrative, dynamic structural biology at atomic resolution—it’s about time. Nat. Methods 12, 307–318 (2015).
Fowler, N. J. & Williamson, M. P. The accuracy of protein structures in solution determined by AlphaFold and NMR. Structure 30, 925–933.e922 (2022). Compares solution NMR structures with AlphaFold predictions, revealing limitations in modeling conformational variability.
Saurabh, S., Nadendla, K., Purohit, S. S., Sivakumar, P. M. & Cetinel, S. Fuzzy drug targets: disordered proteins in the drug-discovery realm. ACS Omega 8, 9729–9747 (2023).
Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).
Ianc, O. et al. Improved detection of magnetic interactions in proteins based on long-lived coherences. Commun. Chem. 7, 112 (2024).
Dai, D. et al. Room-temperature dynamic nuclear polarization enhanced NMR spectroscopy of small biological molecules in water. Nat. Commun. 12, 6880 (2021).
Jahangiri, A. & Orekhov, V. Beyond traditional magnetic resonance processing with artificial intelligence. Commun. Chem. 7, 244 (2024).
Luo, Y. et al. Deep learning and its applications in nuclear magnetic resonance spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 146-147, 101556 (2025).
Karunanithy, G., Shukla, V. K. & Hansen, D. F. Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks. Nat. Commun. 15, 5073 (2024).
Gauto, D. F. et al. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat. Commun. 10, 2697 (2019).
Gardner, K. H. & Kay, L. E. The use of 2H, 13 C, 15 N multidimensional NMR GTO study the structure and dynamics of proteins. Annu. Rev. Biophysics Biomolecular Struct. 27, 357–406 (1998).
Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C. & Kay, L. E. A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomolecular NMR 13, 369–374 (1999).
Lichtenecker, R. J., Weinhäupl, K., Schmid, W. & Konrat, R. α-Ketoacids as precursors for phenylalanine and tyrosine labelling in cell-based protein overexpression. J. Biomolecular NMR 57, 327–331 (2013).
Lichtenecker, R. J., Schörghuber, J. & Bisaccia, M. Synthesis of Metabolic Amino acid Precursors: Tools for Selective Isotope Labeling in Cell-Based Protein Overexpression. Synlett 26, 2611–2616 (2015).
Schörghuber, J. et al. Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds. J. Biomolecular NMR 69, 13–22 (2017).
Schorghuber, J. et al. Late metabolic precursors for selective aromatic residue labeling. J. Biomol. NMR 71, 129–140 (2018).
Martin, N. H., Loveless, D. M., Main, K. L. & Wade, D. C. Computation of through-space NMR shielding effects by small-ring aromatic and antiaromatic hydrocarbons. J. Mol. Graph Model 25, 389–395 (2006).
Medek, A., Hajduk, P. J., Mack, J. & Fesik, S. W. The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J. Am. Chem. Soc. 122, 1241–1242 (2000).
Platzer, G. et al. Ligand (1) H NMR chemical shifts as accurate reporters for protein-ligand binding interfaces in solution. Chemphyschem 25, e202300636 (2024). Validates ligand 1H chemical shifts as reliable indicators of binding environments, enabling experimental mapping of interaction interfaces.
Otting, G. & Liepinsh, E. Protein hydration viewed by high-resolution NMR Spectroscopy: Implications for Magnetic Resonance Image Contrast. Acc. Chem. Res. 28, 171–177 (1995).
Nucci, N. V., Pometun, M. S. & Wand, A. J. Site-resolved measurement of water-protein interactions by solution NMR. Nat. Struct. Mol. Biol. 18, 245–249 (2011).
Otting, G. & Wuethrich, K. Studies of protein hydration in aqueous solution by direct NMR observation of individual protein-bound water molecules. J. Am. Chem. Soc. 111, 1871–1875 (1989).
Otting, G. NMR studies of water bound to biological molecules. Prog. Nucl. Magn. Reson. Spectrosc. 31, 259–285 (1997).
Geist, L. et al. Direct NMR probing of hydration shells of protein ligand interfaces and its application to drug design. J. Medicinal Chem. 60, 8708–8715 (2017). Uses NMR to detect weakly bound water molecules at protein-ligand interfaces, identifying opportunities for affinity-enhancing modifications.
Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).
Baldwin, A. J. & Kay, L. E. NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol. 5, 808–814 (2009).
Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).
Dubey, A., Takeuchi, K., Reibarkh, M. & Arthanari, H. The role of NMR in leveraging dynamics and entropy in drug design. J. Biomol. NMR 74, 479–498 (2020).
Poppe, L. The role of NMR in advancing small molecule drug discovery. Trends Pharm. Sci. 45, 283–286 (2024). Highlights recent developments in NMR techniques that have expanded its utility for identifying and characterizing small molecule binders.
Alderson, T. R. & Kay, L. E. Unveiling invisible protein states with NMR spectroscopy. Curr. Opin. Struct. Biol. 60, 39–49 (2020).
Hommel, U. et al. Discovery of a selective and biologically active low-molecular weight antagonist of human interleukin-1beta. Nat. Commun. 14, 5497 (2023).
Reibarkh, M., Malia, T. J. & Wagner, G. NMR distinction of single- and multiple-mode binding of small-molecule protein ligands. J. Am. Chem. Soc. 128, 2160–2161 (2006).
Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).
Tang, C., Schwieters, C. D. & Clore, G. M. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449, 1078–1082 (2007).
Stiller, J. B. et al. Structure determination of high-energy states in a dynamic protein ensemble. Nature 603, 528–535 (2022).
Orts, J. & Gossert, A. D. Structure determination of protein-ligand complexes by NMR in solution. Methods 138-139, 3–25 (2018).
Fraser, J. S. & Murcko, M. A. Structure is beauty, but not always truth. Cell 187, 517–520 (2024). Argues that static structures can misrepresent biomolecular behavior, advocating for ensemble-based representations in drug design.
del Alamo, D., Sala, D., McHaourab, H. S. & Meiler, J. Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11, e75751 (2022).
Stein, R. A. & McHaourab, H. S. SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2. PLoS Comput. Biol. 18, e1010483 (2022).
Riccabona, J. R. et al. Assessing AF2’s ability to predict structural ensembles of proteins. Structure 32, 2147–2159 e2142 (2024).
Maddipatla, A. et al. Inverse problems with experiment-guided AlphaFold. arXiv preprint arXiv:2502.09372 (2025).
Meller, A., Bhakat, S., Solieva, S. & Bowman, G. R. Accelerating cryptic pocket discovery using AlphaFold. J. Chem. Theory Comput 19, 4355–4363 (2023).
Sala, D., Engelberger, F., McHaourab, H. S. & Meiler, J. Modeling conformational states of proteins with AlphaFold. Curr. Opin. Struct. Biol. 81, 102645 (2023).
Monteiro da Silva, G., Cui, J. Y., Dalgarno, D. C., Lisi, G. P. & Rubenstein, B. M. High-throughput prediction of protein conformational distributions with subsampled AlphaFold2. Nat. Commun. 15, 2464 (2024).
Xiao, Y. & Woods, R. J. Protein-ligand CH-pi interactions: structural informatics, energy function development, and docking implementation. J. Chem. Theory Comput 19, 5503–5515 (2023).
Ginex, T., Vázquez, J., Estarellas, C. & Luque, F. J. Quantum mechanical-based strategies in drug discovery: finding the pace to new challenges in drug design. Curr. Opin. Struct. Biol. 87, 102870 (2024).
Boomsma, W., Ferkinghoff-Borg, J. & Lindorff-Larsen, K. Combining experiments and simulations using the maximum entropy principle. PLOS Computational Biol. 10, e1003406 (2014).
Hummer, G. & Köfinger, J. Bayesian ensemble refinement by replica simulations and reweighting. J. Chem. Phys. 143, 243150 (2015).
Orioli, S., Larsen, A. H., Bottaro, S. & Lindorff-Larsen, K. in Progress in Molecular Biology and Translational Science 170 (eds B. Strodel & B. Barz) 123-176 (Academic Press, 2020).
Crehuet, R., Buigues, P. J., Salvatella, X. & Lindorff-Larsen, K. Bayesian-Maximum-Entropy Reweighting of IDP Ensembles Based on NMR Chemical Shifts. Entropy 21 (2019).
Kauffmann, C., Zawadzka-Kazimierczuk, A., Kontaxis, G. & Konrat, R. Using Cross-Correlated Spin Relaxation to Characterize Backbone Dihedral Angle Distributions of Flexible Protein Segments. Chemphyschem 22, 18–28 (2021).
Schapira, M., Halabelian, L., Arrowsmith, C. H. & Harding, R. J. Big data and benchmarking initiatives to bridge the gap from AlphaFold to drug design. Nat. Chem. Biol. 20, 937–940 (2024). Emphasizes the need for experimental benchmarks to improve the reliability of AI-driven structural predictions for drug discovery.
Samways, M. L., Taylor, R. D., Bruce Macdonald, H. E. & Essex, J. W. Water molecules at protein-drug interfaces: computational prediction and analysis methods. Chem. Soc. Rev. 50, 9104–9120 (2021).
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235–242 (2000).
.png)

