NodeAV – FFmpeg Bindings for Node.js

1 day ago 1

npm version npm downloads  MIT TypeScript FFmpeg Platform

Native Node.js bindings for FFmpeg with full TypeScript support. Provides direct access to FFmpeg's C APIs through N-API. Includes both raw FFmpeg bindings for full control and higher-level abstractions. Automatic resource management via Disposable pattern, hardware acceleration support and prebuilt binaries for Windows, Linux, and macOS.

📚 Documentation

Direct access to FFmpeg's C APIs with minimal abstractions. Perfect when you need full control over FFmpeg functionality.

import { AVERROR_EOF, AVMEDIA_TYPE_VIDEO } from 'node-av/constants'; import { Codec, CodecContext, FFmpegError, FormatContext, Frame, Packet, Rational } from 'node-av/lib'; // Open input file await using ifmtCtx = new FormatContext(); let ret = await ifmtCtx.openInput('input.mp4'); FFmpegError.throwIfError(ret, 'Could not open input file'); ret = await ifmtCtx.findStreamInfo(); FFmpegError.throwIfError(ret, 'Could not find stream info'); // Find video stream const videoStreamIndex = ifmtCtx.findBestStream(AVMEDIA_TYPE_VIDEO); const videoStream = ifmtCtx.streams?.[videoStreamIndex]; if (!videoStream) { throw new Error('No video stream found'); } // Create codec const codec = Codec.findDecoder(videoStream.codecpar.codecId); if (!codec) { throw new Error('Codec not found'); } // Allocate codec context for the decoder using decoderCtx = new CodecContext(); decoderCtx.allocContext3(codec); ret = decoderCtx.parametersToContext(videoStream.codecpar); FFmpegError.throwIfError(ret, 'Could not copy codec parameters to decoder context'); // Inform the decoder about the timebase for packet timestamps and the frame rate decoderCtx.pktTimebase = videoStream.timeBase; decoderCtx.framerate = videoStream.rFrameRate || videoStream.avgFrameRate || new Rational(25, 1); // Open decoder context ret = await decoderCtx.open2(codec, null); FFmpegError.throwIfError(ret, 'Could not open codec'); // Process packets using packet = new Packet(); packet.alloc(); using frame = new Frame(); frame.alloc(); while (true) { let ret = await ifmtCtx.readFrame(packet); if (ret < 0) { break; } if (packet.streamIndex === videoStreamIndex) { // Send packet to decoder ret = await decoderCtx.sendPacket(packet); if (ret < 0 && ret !== AVERROR_EOF) { FFmpegError.throwIfError(ret, 'Error sending packet to decoder'); } // Receive decoded frames while (true) { const ret = await decoderCtx.receiveFrame(frame); if (ret === AVERROR_EOF || ret < 0) { break; } console.log(`Decoded frame ${frame.pts}, size: ${frame.width}x${frame.height}`); // Process frame data... } } packet.unref(); }

Higher-level abstractions for common tasks like decoding, encoding, filtering, and transcoding. Easier to use while still providing access to low-level details when needed.

import { Decoder, Encoder, MediaInput, MediaOutput } from 'node-av/api'; import { FF_ENCODER_LIBX264 } from 'node-av/constants'; // Open media await using input = await MediaInput.open('input.mp4'); await using output = await MediaOutput.open('output.mp4'); // Get video stream const videoStream = input.video()!; // Create decoder using decoder = await Decoder.create(videoStream); // Create encoder using encoder = await Encoder.create(FF_ENCODER_LIBX264, { timeBase: videoStream.timeBase, frameRate: videoStream.avgFrameRate, }); // Add stream to output const outputIndex = output.addStream(encoder); // Process packets for await (using packet of input.packets(videoStream.index)) { using frame = await decoder.decode(packet); if (frame) { using encoded = await encoder.encode(frame); if (encoded) { await output.writePacket(encoded, outputIndex); } } } // Flush decoder for await (using frame of decoder.flushFrames()) { using encoded = await encoder.encode(frame); if (encoded) { await output.writePacket(encoded, outputIndex); } } // Flush encoder for await (using packet of encoder.flushPackets()) { await output.writePacket(packet, outputIndex); } // Done

A simple way to chain together multiple processing steps like decoding, filtering, encoding, and muxing.

import { pipeline, MediaInput, MediaOutput, Decoder, Encoder } from 'node-av/api'; // Simple transcode pipeline: input → decoder → encoder → output const input = await MediaInput.open('input.mp4'); const output = await MediaOutput.open('output.mp4'); const decoder = await Decoder.create(input.video()); const encoder = await Encoder.create(FF_ENCODER_LIBX264, { timeBase: videoStream.timeBase, frameRate: videoStream.avgFrameRate, }); const control = pipeline(input, decoder, encoder, output); await control.completion;

The library supports all hardware acceleration methods available in FFmpeg. The specific hardware types available depend on your FFmpeg build and system configuration.

import { HardwareContext } from 'node-av/api'; import { FF_ENCODER_LIBX264 } from 'node-av/constants'; // Automatically detect best available hardware const hw = HardwareContext.auto(); console.log(`Using hardware: ${hw.deviceTypeName}`); // Use with decoder const decoder = await Decoder.create(stream, { hardware: hw }); // Use with encoder (use hardware-specific codec) const encoderCodec = hw?.getEncoderCodec('h264') ?? FF_ENCODER_LIBX264; const encoder = await Encoder.create(encoderCodec, { timeBase: videoStream.timeBase, frameRate: videoStream.avgFrameRate, });
import { AV_HWDEVICE_TYPE_CUDA, AV_HWDEVICE_TYPE_VAAPI } from 'node-av/constants'; // Use specific hardware type const cuda = HardwareContext.create(AV_HWDEVICE_TYPE_CUDA); const vaapi = HardwareContext.create(AV_HWDEVICE_TYPE_VAAPI, '/dev/dri/renderD128');

The library provides multiple entry points for optimal tree shaking:

// High-Level API only - Recommended for most use cases import { MediaInput, MediaOutput, Decoder, Encoder } from 'node-av/api'; // Low-Level API only - Direct FFmpeg bindings import { FormatContext, CodecContext, Frame, Packet } from 'node-av/lib'; // Constants only - When you just need FFmpeg constants import { AV_PIX_FMT_YUV420P, AV_CODEC_ID_H264 } from 'node-av/constants'; // Channel layouts only - For audio channel configurations import { AV_CHANNEL_LAYOUT_STEREO, AV_CHANNEL_LAYOUT_5POINT1 } from 'node-av/layouts'; // Default export - Includes everything import * as ffmpeg from 'node-av';
const media = await MediaInput.open('input.mp4');
const media = await MediaInput.open('rtsp://example.com/stream');
import { readFile } from 'fs/promises'; const buffer = await readFile('input.mp4'); const media = await MediaInput.open(buffer);
// Raw video input const rawVideo = await MediaInput.open({ type: 'video', input: 'input.yuv', width: 1280, height: 720, pixelFormat: AV_PIX_FMT_YUV420P, frameRate: { num: 30, den: 1 } }); // Raw audio input const rawAudio = await MediaInput.open({ type: 'audio', input: 'input.pcm', sampleRate: 48000, channels: 2, sampleFormat: AV_SAMPLE_FMT_S16 }, { format: 's16le' });

The library supports automatic resource cleanup using the Disposable pattern:

// Automatic cleanup with 'using' { await using media = await MediaInput.open('input.mp4'); using decoder = await Decoder.create(media.video()); // Resources automatically cleaned up at end of scope } // Manual cleanup const media = await MediaInput.open('input.mp4'); try { // Process media } finally { await media.close(); }

Need direct access to the FFmpeg binary? The library provides an easy way to get FFmpeg binaries that automatically downloads and manages platform-specific builds.

import { ffmpegPath, isFfmpegAvailable } from 'node-av/ffmpeg'; import { execFile } from 'node:child_process'; import { promisify } from 'node:util'; const execFileAsync = promisify(execFile); // Check if FFmpeg binary is available if (isFfmpegAvailable()) { console.log('FFmpeg binary found at:', ffmpegPath()); // Use FFmpeg binary directly const { stdout } = await execFileAsync(ffmpegPath(), ['-version']); console.log(stdout); } else { console.log('FFmpeg binary not available - install may have failed'); } // Direct usage example async function convertVideo(input: string, output: string) { const args = [ '-i', input, '-c:v', 'libx264', '-crf', '23', '-c:a', 'aac', output ]; await execFileAsync(ffmpegPath(), args); }

The FFmpeg binary is automatically downloaded during installation from GitHub releases and matches the same build used by the native bindings.

NodeAV executes all media operations directly through FFmpeg's native C libraries. The Node.js bindings add minimal overhead - mostly just the JavaScript-to-C boundary crossings. During typical operations like transcoding or filtering, most processing time is spent in FFmpeg's optimized C code.

Every async method in NodeAV has a corresponding synchronous variant with the Sync suffix:

  • Async methods (default) - Non-blocking operations using N-API's AsyncWorker. Methods like decode(), encode(), read(), packets() return Promises or AsyncGenerators.

  • Sync methods - Direct FFmpeg calls without AsyncWorker overhead. Same methods with Sync suffix: decodeSync(), encodeSync(), readSync(), packetsSync().

The key difference: Async methods don't block the Node.js event loop, allowing other operations to run concurrently. Sync methods block until completion but avoid AsyncWorker overhead, making them faster for sequential processing.

Memory Safety Considerations

NodeAV provides direct bindings to FFmpeg's C APIs, which work with raw memory pointers. The high-level API adds safety abstractions and automatic resource management, but incorrect usage can still cause crashes. Common issues include mismatched video dimensions, incompatible pixel formats, or improper frame buffer handling. The library validates parameters where possible, but can't guarantee complete memory safety without limiting functionality. When using the low-level API, pay attention to parameter consistency, resource cleanup, and format compatibility. Following the documented patterns helps avoid memory-related issues.

Example FFmpeg Low-Level API High-Level API
browser-fmp4
browser-webrtc
api-dash
api-encode-decode
api-frame-extract
api-hw-decode-sw-encode
api-hw-raw
api-hw-raw-output
api-hw-rtsp-custom-io
api-hw-rtsp
api-hw-transcode
api-hw-filter-sync
api-muxing
api-pipeline-hw-rtsp
api-pipeline-raw-muxing
api-stream-input
api-sw-decode-hw-encode
api-sw-transcode
frame-utils
avio-read-callback
decode-audio
decode-filter-audio
decode-filter-video
decode-video
demux-decode
encode-audio
encode-video
ffprobe-metadata
filter-audio
hw-decode
hw-encode
hw-transcode
qsv-decode
qsv-transcode
vaapi-encode
vaapi-transcode
mux
remux
resample-audio
scale-video
show-metadata
transcode-aac
transcode

Prebuilt binaries are available for multiple platforms:

  • macOS: x64, ARM64
  • Linux: x64, ARM64
  • Windows: x64, ARM64 (automatic MSVC/MinGW selection)

Hardware Acceleration on Linux (Intel/VAAPI)

For hardware-accelerated video processing with Intel GPUs on Linux, you need to install specific system packages. The FFmpeg binaries included with this library are built with libva 2.20, which requires Ubuntu 24.04+ or Debian 13+ as minimum OS versions.

  1. Add Kisak-Mesa PPA (recommended for newer Mesa versions with better hardware support):
sudo add-apt-repository ppa:kisak/kisak-mesa sudo apt update
  1. Install required packages:
sudo apt install libmfx-gen1.2 mesa-va-drivers mesa-vulkan-drivers libva2 libva-drm2 vainfo libvulkan1 vulkan-tools

After installation, verify hardware acceleration is working:

# Check VAAPI support vainfo # Check Vulkan support vulkaninfo # Should show available profiles and entrypoints for your Intel GPU

Note: If you're running an older Ubuntu version (< 24.04) or Debian version (< 13), you'll need to upgrade your OS to use hardware acceleration with this library.

This project is licensed under the MIT License. See the LICENSE file for details.

Important: FFmpeg itself is licensed under LGPL/GPL. Please ensure compliance with FFmpeg's license terms when using this library. The FFmpeg libraries themselves retain their original licenses, and this wrapper library does not change those terms. See FFmpeg License for details.

Contributions are welcome! Please read CONTRIBUTING.md for development setup, code standards, and contribution guidelines before submitting pull requests.

For issues and questions, please use the GitHub issue tracker.

Read Entire Article