OSS Alternative to Open WebUI – ChatGPT-Like UI, API and CLI

16 hours ago 2

Lightweight CLI, API and ChatGPT-like alternative to Open WebUI for accessing multiple LLMs, entirely offline, with all data kept private in browser storage.

Configure additional providers and models in llms.json

  • Mix and match local models with models from different API providers
  • Requests automatically routed to available providers that supports the requested model (in defined order)
  • Define free/cheapest/local providers first to save on costs
  • Any failures are automatically retried on the next available provider
  • Lightweight: Single llms.py Python file with single aiohttp dependency (Pillow optional)
  • Multi-Provider Support: OpenRouter, Ollama, Anthropic, Google, OpenAI, Grok, Groq, Qwen, Z.ai, Mistral
  • OpenAI-Compatible API: Works with any client that supports OpenAI's chat completion API
  • Built-in Analytics: Built-in analytics UI to visualize costs, requests, and token usage
  • Configuration Management: Easy provider enable/disable and configuration management
  • CLI Interface: Simple command-line interface for quick interactions
  • Server Mode: Run an OpenAI-compatible HTTP server at http://localhost:{PORT}/v1/chat/completions
  • Image Support: Process images through vision-capable models
    • Auto resizes and converts to webp if exceeds configured limits
  • Audio Support: Process audio through audio-capable models
  • Custom Chat Templates: Configurable chat completion request templates for different modalities
  • Auto-Discovery: Automatically discover available Ollama models
  • Unified Models: Define custom model names that map to different provider-specific names
  • Multi-Model Support: Support for over 160+ different LLMs

Access all your local all remote LLMs with a single ChatGPT-like UI:

Monthly Token Usage (Dark Mode)

More Features and Screenshots.

Check Provider Reliability and Response Times

Check the status of configured providers to test if they're configured correctly, reachable and what their response times is for the simplest 1+1= request:

# Check all models for a provider: llms --check groq # Check specific models for a provider: llms --check groq kimi-k2 llama4:400b gpt-oss:120b

llms-check.webp

As they're a good indicator for the reliability and speed you can expect from different providers we've created a test-providers.yml GitHub Action to test the response times for all configured providers and models, the results of which will be frequently published to /checks/latest.txt

  • Improved Responsive Layout with collapsible Sidebar
  • Return focus to textarea after request completes
  • Support VERBOSE=1 for enabling --verbose mode (useful in Docker)
  • Autoreload providers and UI config when change to config files is detected
  • Add cancel button to cancel pending request
  • Clicking outside model or system prompt selector will collapse it
  • Clicking on selected item no longer deselects it
  • Dark Mode
  • Drag n' Drop files in Message prompt
  • Copy & Paste files in Message prompt
  • Support for GitHub OAuth and optional restrict access to specified Users
  • Support for Docker and Docker Compose

llms.py Releases

Set environment variables for the providers you want to use:

export OPENROUTER_API_KEY="..."
Provider Variable Description Example
openrouter_free OPENROUTER_API_KEY OpenRouter FREE models API key sk-or-...
groq GROQ_API_KEY Groq API key gsk_...
google_free GOOGLE_FREE_API_KEY Google FREE API key AIza...
codestral CODESTRAL_API_KEY Codestral API key ...
ollama N/A No API key required
openrouter OPENROUTER_API_KEY OpenRouter API key sk-or-...
google GOOGLE_API_KEY Google API key AIza...
anthropic ANTHROPIC_API_KEY Anthropic API key sk-ant-...
openai OPENAI_API_KEY OpenAI API key sk-...
grok GROK_API_KEY Grok (X.AI) API key xai-...
qwen DASHSCOPE_API_KEY Qwen (Alibaba) API key sk-...
z.ai ZAI_API_KEY Z.ai API key sk-...
mistral MISTRAL_API_KEY Mistral API key ...

Start the UI and an OpenAI compatible API on port 8000:

Launches UI at http://localhost:8000 and OpenAI Endpoint at http://localhost:8000/v1/chat/completions.

To see detailed request/response logging, add --verbose:

llms --serve 8000 --verbose
llms "What is the capital of France?"

Any providers that have their API Keys set and enabled in llms.json are automatically made available.

Providers can be enabled or disabled in the UI at runtime next to the model selector, or on the command line:

# Disable free providers with free models and free tiers llms --disable openrouter_free codestral google_free groq # Enable paid providers llms --enable openrouter anthropic google openai grok z.ai qwen mistral

a) Simple - Run in a Docker container:

Run the server on port 8000:

docker run -p 8000:8000 -e GROQ_API_KEY=$GROQ_API_KEY ghcr.io/servicestack/llms:latest

Get the latest version:

docker pull ghcr.io/servicestack/llms:latest

Use custom llms.json and ui.json config files outside of the container (auto created if they don't exist):

docker run -p 8000:8000 -e GROQ_API_KEY=$GROQ_API_KEY \ -v ~/.llms:/home/llms/.llms \ ghcr.io/servicestack/llms:latest

b) Recommended - Use Docker Compose:

Download and use docker-compose.yml:

curl -O https://raw.githubusercontent.com/ServiceStack/llms/refs/heads/main/docker-compose.yml

Update API Keys in docker-compose.yml then start the server:

c) Build and run local Docker image from source:

git clone https://github.com/ServiceStack/llms docker-compose -f docker-compose.local.yml up -d --build

After the container starts, you can access the UI and API at http://localhost:8000.

See DOCKER.md for detailed instructions on customizing configuration files.

GitHub OAuth Authentication

llms.py supports optional GitHub OAuth authentication to secure your web UI and API endpoints. When enabled, users must sign in with their GitHub account before accessing the application.

{ "auth": { "enabled": true, "github": { "client_id": "$GITHUB_CLIENT_ID", "client_secret": "$GITHUB_CLIENT_SECRET", "redirect_uri": "http://localhost:8000/auth/github/callback", "restrict_to": "$GITHUB_USERS" } } }

GITHUB_USERS is optional but if set will only allow access to the specified users.

See GITHUB_OAUTH_SETUP.md for detailed setup instructions.

The configuration file llms.json is saved to ~/.llms/llms.json and defines available providers, models, and default settings. Key sections:

  • headers: Common HTTP headers for all requests
  • text: Default chat completion request template for text prompts
  • image: Default chat completion request template for image prompts
  • audio: Default chat completion request template for audio prompts
  • file: Default chat completion request template for file prompts
  • check: Check request template for testing provider connectivity
  • limits: Override Request size limits
  • convert: Max image size and length limits and auto conversion settings

Each provider configuration includes:

  • enabled: Whether the provider is active
  • type: Provider class (OpenAiProvider, GoogleProvider, etc.)
  • api_key: API key (supports environment variables with $VAR_NAME)
  • base_url: API endpoint URL
  • models: Model name mappings (local name → provider name)
  • pricing: Pricing per token (input/output) for each model
  • default_pricing: Default pricing if not specified in pricing
  • check: Check request template for testing provider connectivity
# Simple question llms "Explain quantum computing" # With specific model llms -m gemini-2.5-pro "Write a Python function to sort a list" llms -m grok-4 "Explain this code with humor" llms -m qwen3-max "Translate this to Chinese" # With system prompt llms -s "You are a helpful coding assistant" "How do I reverse a string in Python?" # With image (vision models) llms --image image.jpg "What's in this image?" llms --image https://example.com/photo.png "Describe this photo" # Display full JSON Response llms "Explain quantum computing" --raw

By default llms uses the defaults/text chat completion request defined in llms.json.

You can instead use a custom chat completion request with --chat, e.g:

# Load chat completion request from JSON file llms --chat request.json # Override user message llms --chat request.json "New user message" # Override model llms -m kimi-k2 --chat request.json

Example request.json:

{ "model": "kimi-k2", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": ""} ], "temperature": 0.7, "max_tokens": 150 }

Send images to vision-capable models using the --image option:

# Use defaults/image Chat Template (Describe the key features of the input image) llms --image ./screenshot.png # Local image file llms --image ./screenshot.png "What's in this image?" # Remote image URL llms --image https://example.org/photo.jpg "Describe this photo" # Data URI llms --image "data:image/png;base64,$(base64 -w 0 image.png)" "Describe this image" # With a specific vision model llms -m gemini-2.5-flash --image chart.png "Analyze this chart" llms -m qwen2.5vl --image document.jpg "Extract text from this document" # Combined with system prompt llms -s "You are a data analyst" --image graph.png "What trends do you see?" # With custom chat template llms --chat image-request.json --image photo.jpg

Example of image-request.json:

{ "model": "qwen2.5vl", "messages": [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "" } }, { "type": "text", "text": "Caption this image" } ] } ] }

Supported image formats: PNG, WEBP, JPG, JPEG, GIF, BMP, TIFF, ICO

Image sources:

  • Local files: Absolute paths (/path/to/image.jpg) or relative paths (./image.png, ../image.jpg)
  • Remote URLs: HTTP/HTTPS URLs are automatically downloaded
  • Data URIs: Base64-encoded images (data:image/png;base64,...)

Images are automatically processed and converted to base64 data URIs before being sent to the model.

Popular models that support image analysis:

  • OpenAI: GPT-4o, GPT-4o-mini, GPT-4.1
  • Anthropic: Claude Sonnet 4.0, Claude Opus 4.1
  • Google: Gemini 2.5 Pro, Gemini Flash
  • Qwen: Qwen2.5-VL, Qwen3-VL, QVQ-max
  • Ollama: qwen2.5vl, llava

Images are automatically downloaded and converted to base64 data URIs.

Send audio files to audio-capable models using the --audio option:

# Use defaults/audio Chat Template (Transcribe the audio) llms --audio ./recording.mp3 # Local audio file llms --audio ./meeting.wav "Summarize this meeting recording" # Remote audio URL llms --audio https://example.org/podcast.mp3 "What are the key points discussed?" # With a specific audio model llms -m gpt-4o-audio-preview --audio interview.mp3 "Extract the main topics" llms -m gemini-2.5-flash --audio interview.mp3 "Extract the main topics" # Combined with system prompt llms -s "You're a transcription specialist" --audio talk.mp3 "Provide a detailed transcript" # With custom chat template llms --chat audio-request.json --audio speech.wav

Example of audio-request.json:

{ "model": "gpt-4o-audio-preview", "messages": [ { "role": "user", "content": [ { "type": "input_audio", "input_audio": { "data": "", "format": "mp3" } }, { "type": "text", "text": "Please transcribe this audio" } ] } ] }

Supported audio formats: MP3, WAV

Audio sources:

  • Local files: Absolute paths (/path/to/audio.mp3) or relative paths (./audio.wav, ../recording.m4a)
  • Remote URLs: HTTP/HTTPS URLs are automatically downloaded
  • Base64 Data: Base64-encoded audio

Audio files are automatically processed and converted to base64 data before being sent to the model.

Popular models that support audio processing:

  • OpenAI: gpt-4o-audio-preview
  • Google: gemini-2.5-pro, gemini-2.5-flash, gemini-2.5-flash-lite

Audio files are automatically downloaded and converted to base64 data URIs with appropriate format detection.

Send documents (e.g. PDFs) to file-capable models using the --file option:

# Use defaults/file Chat Template (Summarize the document) llms --file ./docs/handbook.pdf # Local PDF file llms --file ./docs/policy.pdf "Summarize the key changes" # Remote PDF URL llms --file https://example.org/whitepaper.pdf "What are the main findings?" # With specific file-capable models llms -m gpt-5 --file ./policy.pdf "Summarize the key changes" llms -m gemini-flash-latest --file ./report.pdf "Extract action items" llms -m qwen2.5vl --file ./manual.pdf "List key sections and their purpose" # Combined with system prompt llms -s "You're a compliance analyst" --file ./policy.pdf "Identify compliance risks" # With custom chat template llms --chat file-request.json --file ./docs/handbook.pdf

Example of file-request.json:

{ "model": "gpt-5", "messages": [ { "role": "user", "content": [ { "type": "file", "file": { "filename": "", "file_data": "" } }, { "type": "text", "text": "Please summarize this document" } ] } ] }

Supported file formats: PDF

Other document types may work depending on the model/provider.

File sources:

  • Local files: Absolute paths (/path/to/file.pdf) or relative paths (./file.pdf, ../file.pdf)
  • Remote URLs: HTTP/HTTPS URLs are automatically downloaded
  • Base64/Data URIs: Inline data:application/pdf;base64,... is supported

Files are automatically downloaded (for URLs) and converted to base64 data URIs before being sent to the model.

Popular multi-modal models that support file (PDF) inputs:

  • OpenAI: gpt-5, gpt-5-mini, gpt-4o, gpt-4o-mini
  • Google: gemini-flash-latest, gemini-2.5-flash-lite
  • Grok: grok-4-fast (OpenRouter)
  • Qwen: qwen2.5vl, qwen3-max, qwen3-vl:235b, qwen3-coder, qwen3-coder-flash (OpenRouter)
  • Others: kimi-k2, glm-4.5-air, deepseek-v3.1:671b, llama4:400b, llama3.3:70b, mai-ds-r1, nemotron-nano:9b

Run as an OpenAI-compatible HTTP server:

# Start server on port 8000 llms --serve 8000

The server exposes a single endpoint:

  • POST /v1/chat/completions - OpenAI-compatible chat completions

Example client usage:

curl -X POST http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "kimi-k2", "messages": [ {"role": "user", "content": "Hello!"} ] }'
# List enabled providers and models llms --list llms ls # List specific providers llms ls ollama llms ls google anthropic # Enable providers llms --enable openrouter llms --enable anthropic google_free groq # Disable providers llms --disable ollama llms --disable openai anthropic # Set default model llms --default grok-4
pip install llms-py --upgrade
# Use custom config file llms --config /path/to/config.json "Hello" # Get raw JSON response llms --raw "What is 2+2?" # Enable verbose logging llms --verbose "Tell me a joke" # Custom log prefix llms --verbose --logprefix "[DEBUG] " "Hello world" # Set default model (updates config file) llms --default grok-4 # Pass custom parameters to chat request (URL-encoded) llms --args "temperature=0.7&seed=111" "What is 2+2?" # Multiple parameters with different types llms --args "temperature=0.5&max_completion_tokens=50" "Tell me a joke" # URL-encoded special characters (stop sequences) llms --args "stop=Two,Words" "Count to 5" # Combine with other options llms --system "You are helpful" --args "temperature=0.3" --raw "Hello"

Custom Parameters with --args

The --args option allows you to pass URL-encoded parameters to customize the chat request sent to LLM providers:

Parameter Types:

  • Floats: temperature=0.7, frequency_penalty=0.2
  • Integers: max_completion_tokens=100
  • Booleans: store=true, verbose=false, logprobs=true
  • Strings: stop=one
  • Lists: stop=two,words

Common Parameters:

  • temperature: Controls randomness (0.0 to 2.0)
  • max_completion_tokens: Maximum tokens in response
  • seed: For reproducible outputs
  • top_p: Nucleus sampling parameter
  • stop: Stop sequences (URL-encode special chars)
  • store: Whether or not to store the output
  • frequency_penalty: Penalize new tokens based on frequency
  • presence_penalty: Penalize new tokens based on presence
  • logprobs: Include log probabilities in response
  • parallel_tool_calls: Enable parallel tool calls
  • prompt_cache_key: Cache key for prompt
  • reasoning_effort: Reasoning effort (low, medium, high, *minimal, *none, *default)
  • safety_identifier: A string that uniquely identifies each user
  • seed: For reproducible outputs
  • service_tier: Service tier (free, standard, premium, *default)
  • top_logprobs: Number of top logprobs to return
  • top_p: Nucleus sampling parameter
  • verbosity: Verbosity level (0, 1, 2, 3, *default)
  • enable_thinking: Enable thinking mode (Qwen)
  • stream: Enable streaming responses

Default Model Configuration

The --default MODEL option allows you to set the default model used for all chat completions. This updates the defaults.text.model field in your configuration file:

# Set default model to gpt-oss llms --default gpt-oss:120b # Set default model to Claude Sonnet llms --default claude-sonnet-4-0 # The model must be available in your enabled providers llms --default gemini-2.5-pro

When you set a default model:

  • The configuration file (~/.llms/llms.json) is automatically updated
  • The specified model becomes the default for all future chat requests
  • The model must exist in your currently enabled providers
  • You can still override the default using -m MODEL for individual requests
pip install llms-py --upgrade

Beautiful rendered Markdown

Pipe Markdown output to glow to beautifully render it in the terminal:

llms "Explain quantum computing" | glow

Any OpenAI-compatible providers and their models can be added by configuring them in llms.json. By default only AI Providers with free tiers are enabled which will only be "available" if their API Key is set.

You can list the available providers, their models and which are enabled or disabled with:

They can be enabled/disabled in your llms.json file or with:

llms --enable <provider> llms --disable <provider>

For a provider to be available, they also require their API Key configured in either your Environment Variables or directly in your llms.json.

Provider Variable Description Example
openrouter_free OPENROUTER_API_KEY OpenRouter FREE models API key sk-or-...
groq GROQ_API_KEY Groq API key gsk_...
google_free GOOGLE_FREE_API_KEY Google FREE API key AIza...
codestral CODESTRAL_API_KEY Codestral API key ...
ollama N/A No API key required
openrouter OPENROUTER_API_KEY OpenRouter API key sk-or-...
google GOOGLE_API_KEY Google API key AIza...
anthropic ANTHROPIC_API_KEY Anthropic API key sk-ant-...
openai OPENAI_API_KEY OpenAI API key sk-...
grok GROK_API_KEY Grok (X.AI) API key xai-...
qwen DASHSCOPE_API_KEY Qwen (Alibaba) API key sk-...
z.ai ZAI_API_KEY Z.ai API key sk-...
mistral MISTRAL_API_KEY Mistral API key ...
  • Type: OpenAiProvider
  • Models: GPT-5, GPT-5 Codex, GPT-4o, GPT-4o-mini, o3, etc.
  • Features: Text, images, function calling
export OPENAI_API_KEY="your-key" llms --enable openai
  • Type: OpenAiProvider
  • Models: Claude Opus 4.1, Sonnet 4.0, Haiku 3.5, etc.
  • Features: Text, images, large context windows
export ANTHROPIC_API_KEY="your-key" llms --enable anthropic
  • Type: GoogleProvider
  • Models: Gemini 2.5 Pro, Flash, Flash-Lite
  • Features: Text, images, safety settings
export GOOGLE_API_KEY="your-key" llms --enable google_free
  • Type: OpenAiProvider
  • Models: 100+ models from various providers
  • Features: Access to latest models, free tier available
export OPENROUTER_API_KEY="your-key" llms --enable openrouter
  • Type: OpenAiProvider
  • Models: Grok-4, Grok-3, Grok-3-mini, Grok-code-fast-1, etc.
  • Features: Real-time information, humor, uncensored responses
export GROK_API_KEY="your-key" llms --enable grok
  • Type: OpenAiProvider
  • Models: Llama 3.3, Gemma 2, Kimi K2, etc.
  • Features: Fast inference, competitive pricing
export GROQ_API_KEY="your-key" llms --enable groq
  • Type: OllamaProvider
  • Models: Auto-discovered from local Ollama installation
  • Features: Local inference, privacy, no API costs
# Ollama must be running locally llms --enable ollama
  • Type: OpenAiProvider
  • Models: Qwen3-max, Qwen-max, Qwen-plus, Qwen2.5-VL, QwQ-plus, etc.
  • Features: Multilingual, vision models, coding, reasoning, audio processing
export DASHSCOPE_API_KEY="your-key" llms --enable qwen
  • Type: OpenAiProvider
  • Models: GLM-4.6, GLM-4.5, GLM-4.5-air, GLM-4.5-x, GLM-4.5-airx, GLM-4.5-flash, GLM-4:32b
  • Features: Advanced language models with strong reasoning capabilities
export ZAI_API_KEY="your-key" llms --enable z.ai
  • Type: OpenAiProvider
  • Models: Mistral Large, Codestral, Pixtral, etc.
  • Features: Code generation, multilingual
export MISTRAL_API_KEY="your-key" llms --enable mistral
  • Type: OpenAiProvider
  • Models: Codestral
  • Features: Code generation
export CODESTRAL_API_KEY="your-key" llms --enable codestral

The tool automatically routes requests to the first available provider that supports the requested model. If a provider fails, it tries the next available provider with that model.

Example: If both OpenAI and OpenRouter support kimi-k2, the request will first try OpenRouter (free), then fall back to Groq than OpenRouter (Paid) if requests fails.

{ "defaults": { "headers": {"Content-Type": "application/json"}, "text": { "model": "kimi-k2", "messages": [{"role": "user", "content": ""}] } }, "providers": { "groq": { "enabled": true, "type": "OpenAiProvider", "base_url": "https://api.groq.com/openai", "api_key": "$GROQ_API_KEY", "models": { "llama3.3:70b": "llama-3.3-70b-versatile", "llama4:109b": "meta-llama/llama-4-scout-17b-16e-instruct", "llama4:400b": "meta-llama/llama-4-maverick-17b-128e-instruct", "kimi-k2": "moonshotai/kimi-k2-instruct-0905", "gpt-oss:120b": "openai/gpt-oss-120b", "gpt-oss:20b": "openai/gpt-oss-20b", "qwen3:32b": "qwen/qwen3-32b" } } } }
{ "providers": { "openrouter": { "enabled": false, "type": "OpenAiProvider", "base_url": "https://openrouter.ai/api", "api_key": "$OPENROUTER_API_KEY", "models": { "grok-4": "x-ai/grok-4", "glm-4.5-air": "z-ai/glm-4.5-air", "kimi-k2": "moonshotai/kimi-k2", "deepseek-v3.1:671b": "deepseek/deepseek-chat", "llama4:400b": "meta-llama/llama-4-maverick" } }, "anthropic": { "enabled": false, "type": "OpenAiProvider", "base_url": "https://api.anthropic.com", "api_key": "$ANTHROPIC_API_KEY", "models": { "claude-sonnet-4-0": "claude-sonnet-4-0" } }, "ollama": { "enabled": false, "type": "OllamaProvider", "base_url": "http://localhost:11434", "models": {}, "all_models": true } } }
usage: llms [-h] [--config FILE] [-m MODEL] [--chat REQUEST] [-s PROMPT] [--image IMAGE] [--audio AUDIO] [--file FILE] [--args PARAMS] [--raw] [--list] [--check PROVIDER] [--serve PORT] [--enable PROVIDER] [--disable PROVIDER] [--default MODEL] [--init] [--root PATH] [--logprefix PREFIX] [--verbose] llms v2.0.24 options: -h, --help show this help message and exit --config FILE Path to config file -m, --model MODEL Model to use --chat REQUEST OpenAI Chat Completion Request to send -s, --system PROMPT System prompt to use for chat completion --image IMAGE Image input to use in chat completion --audio AUDIO Audio input to use in chat completion --file FILE File input to use in chat completion --args PARAMS URL-encoded parameters to add to chat request (e.g. "temperature=0.7&seed=111") --raw Return raw AI JSON response --list Show list of enabled providers and their models (alias ls provider?) --check PROVIDER Check validity of models for a provider --serve PORT Port to start an OpenAI Chat compatible server on --enable PROVIDER Enable a provider --disable PROVIDER Disable a provider --default MODEL Configure the default model to use --init Create a default llms.json --root PATH Change root directory for UI files --logprefix PREFIX Prefix used in log messages --verbose Verbose output

The easiest way to run llms-py is using Docker:

# Using docker-compose (recommended) docker-compose up -d # Or pull and run directly docker run -p 8000:8000 \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest

Pre-built Docker images are automatically published to GitHub Container Registry:

  • Latest stable: ghcr.io/servicestack/llms:latest
  • Specific version: ghcr.io/servicestack/llms:v2.0.24
  • Main branch: ghcr.io/servicestack/llms:main

Pass API keys as environment variables:

docker run -p 8000:8000 \ -e OPENROUTER_API_KEY="sk-or-..." \ -e GROQ_API_KEY="gsk_..." \ -e GOOGLE_FREE_API_KEY="AIza..." \ -e ANTHROPIC_API_KEY="sk-ant-..." \ -e OPENAI_API_KEY="sk-..." \ ghcr.io/servicestack/llms:latest

Create a docker-compose.yml file (or use the one in the repository):

version: '3.8' services: llms: image: ghcr.io/servicestack/llms:latest ports: - "8000:8000" environment: - OPENROUTER_API_KEY=${OPENROUTER_API_KEY} - GROQ_API_KEY=${GROQ_API_KEY} - GOOGLE_FREE_API_KEY=${GOOGLE_FREE_API_KEY} volumes: - llms-data:/home/llms/.llms restart: unless-stopped volumes: llms-data:

Create a .env file with your API keys:

OPENROUTER_API_KEY=sk-or-... GROQ_API_KEY=gsk_... GOOGLE_FREE_API_KEY=AIza...

Start the service:

Build the Docker image from source:

# Using the build script ./docker-build.sh # Or manually docker build -t llms-py:latest . # Run your local build docker run -p 8000:8000 \ -e OPENROUTER_API_KEY="your-key" \ llms-py:latest

To persist configuration and analytics data between container restarts:

# Using a named volume (recommended) docker run -p 8000:8000 \ -v llms-data:/home/llms/.llms \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest # Or mount a local directory docker run -p 8000:8000 \ -v $(pwd)/llms-config:/home/llms/.llms \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest

Custom Configuration Files

Customize llms-py behavior by providing your own llms.json and ui.json files:

Option 1: Mount a directory with custom configs

# Create config directory with your custom files mkdir -p config # Add your custom llms.json and ui.json to config/ # Mount the directory docker run -p 8000:8000 \ -v $(pwd)/config:/home/llms/.llms \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest

Option 2: Mount individual config files

docker run -p 8000:8000 \ -v $(pwd)/my-llms.json:/home/llms/.llms/llms.json:ro \ -v $(pwd)/my-ui.json:/home/llms/.llms/ui.json:ro \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest

With docker-compose:

volumes: # Use local directory - ./config:/home/llms/.llms # Or mount individual files # - ./my-llms.json:/home/llms/.llms/llms.json:ro # - ./my-ui.json:/home/llms/.llms/ui.json:ro

The container will auto-create default config files on first run if they don't exist. You can customize these to:

  • Enable/disable specific providers
  • Add or remove models
  • Configure API endpoints
  • Set custom pricing
  • Customize chat templates
  • Configure UI settings

See DOCKER.md for detailed configuration examples.

Change the port mapping to run on a different port:

# Run on port 3000 instead of 8000 docker run -p 3000:8000 \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest

You can also use the Docker container for CLI commands:

# Run a single query docker run --rm \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest \ llms "What is the capital of France?" # List available models docker run --rm \ -e OPENROUTER_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest \ llms --list # Check provider status docker run --rm \ -e GROQ_API_KEY="your-key" \ ghcr.io/servicestack/llms:latest \ llms --check groq

The Docker image includes a health check that verifies the server is responding:

# Check container health docker ps # View health check logs docker inspect --format='{{json .State.Health}}' llms-server

Multi-Architecture Support

The Docker images support multiple architectures:

  • linux/amd64 (x86_64)
  • linux/arm64 (ARM64/Apple Silicon)

Docker will automatically pull the correct image for your platform.

Config file not found

# Initialize default config llms --init # Or specify custom path llms --config ./my-config.json

No providers enabled

# Check status llms --list # Enable providers llms --enable google anthropic

API key issues

# Check environment variables echo $ANTHROPIC_API_KEY # Enable verbose logging llms --verbose "test"

Model not found

# List available models llms --list # Check provider configuration llms ls openrouter

Enable verbose logging to see detailed request/response information:

llms --verbose --logprefix "[DEBUG] " "Hello"

This shows:

  • Enabled providers
  • Model routing decisions
  • HTTP request details
  • Error messages with stack traces
  • llms/main.py - Main script with CLI and server functionality
  • llms/llms.json - Default configuration file
  • llms/ui.json - UI configuration file
  • requirements.txt - Python dependencies, required: aiohttp, optional: Pillow
  • OpenAiProvider - Generic OpenAI-compatible provider
  • OllamaProvider - Ollama-specific provider with model auto-discovery
  • GoogleProvider - Google Gemini with native API format
  • GoogleOpenAiProvider - Google Gemini via OpenAI-compatible endpoint
  1. Create a provider class inheriting from OpenAiProvider
  2. Implement provider-specific authentication and formatting
  3. Add provider configuration to llms.json
  4. Update initialization logic in init_llms()

Contributions are welcome! Please submit a PR to add support for any missing OpenAI-compatible providers.

Read Entire Article