[Submitted on 26 Jun 2025 (v1), last revised 1 Jul 2025 (this version, v2)]
Authors:James Wen, Sahil Nalawade, Zhiwei Liang, Catherine Bielick, Marisa Ferrara Boston, Alexander Chowdhury, Adele Collin, Luigi De Angelis, Jacob Ellen, Heather Frase, Rodrigo R. Gameiro, Juan Manuel Gutierrez, Pooja Kadam, Murat Keceli, Srikanth Krishnamurthy, Anne Kwok, Yanan Lance Lu, Heather Mattie, Liam G. McCoy, Katherine Miller, Allison C. Morgan, Marlene Louisa Moerig, Trang Nguyen, Alexander Owen-Post, Alex D. Ruiz, Sreekar Reddy Puchala, Soujanya Samineni, Takeshi Tohyama, Varun Ullanat, Carmine Valenza, Camilo Velez, Pengcheng Wang, Anna Wuest, Yuxiang Zhou, Yingde Zhu, Jason M. Johnson, Naomi Lenane, Jennifer Willcox, Francis J. Vitiello, Leo Anthony G. Celi, Renato Umeton
Case Description: We conducted a structured red teaming exercise in Nov. 2024, with 42 participants from academic, industry, and government institutions. Four teams attempted to extract copyrighted content from GPT4DFCI across four domains: literary works, news articles, scientific publications, and access-restricted clinical notes. Teams successfully extracted verbatim book dedications and near-exact passages through indirect prompting strategies. News article extraction failed despite jailbreak attempts. Scientific article reproduction yielded only high-level summaries. Clinical note testing revealed appropriate privacy safeguards with data reformatting rather than reproduction.
Discussion: The successful extraction of literary content indicates potential copyright material presence in training data, necessitating enhanced inference-time filtering. Differential success rates across content types suggest varying protective mechanisms. The event led to implementation of a copyright-specific meta-prompt in GPT4DFCI; this mitigation is in production since Jan. 2025.
Conclusion: Systematic red teaming revealed specific vulnerabilities in generative AI copyright compliance, leading to concrete mitigation strategies. Academic medical institutions deploying generative AI must implement continuous testing protocols to ensure legal and ethical compliance.
Submission history
From: Renato Umeton [view email]
[v1]
Thu, 26 Jun 2025 23:11:49 UTC (159 KB)
[v2]
Tue, 1 Jul 2025 03:17:10 UTC (196 KB)
.png)


