Ru and W isotope systematics in ocean island basalts reveals core leakage

1 day ago 4

References

  1. Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Article  ADS  CAS  Google Scholar 

  2. Rizo, H. et al. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).

    Article  Google Scholar 

  3. Horton, F. et al. Highest terrestrial 3He/4He credibly from the core. Nature 623, 90–94 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Walker, R. J., Morgan, J. W. & Horan, M. F. Osmium-187 enrichment in some plumes: evidence for core-mantle interaction? Science 269, 819–822 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Vockenhuber, C. et al. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys. Rev. Lett. 93, 172501 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Archer, G. J. et al. Origin of W anomalies in ocean island basalts. Geochem. Geophys. Geosyst. 24, e2022GC010688 (2023).

    Article  ADS  CAS  Google Scholar 

  9. Bouhifd, M. A., Jephcoat, A. P., Heber, V. S. & Kelley, S. P. Helium in Earth’s early core. Nat. Geosci. 6, 982–986 (2013).

    Article  ADS  CAS  Google Scholar 

  10. Ferrick, A. L. & Korenaga, J. Long-term core–mantle interaction explains W-He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Korenaga, J. & Marchi, S. Vestiges of impact-driven three-phase mixing in the chemistry and structure of Earth’s mantle. Proc. Natl Acad. Sci. USA 120, e2309181120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Willhite, L. N., Finlayson, V. A. & Walker, R. J. Evolution of tungsten isotope systematics in the Mauna Kea volcano provides new constraints on anomalous µ182W and high 3He/4He in the mantle. Earth Planet. Sci. Lett. 640, 118795 (2024).

    Article  CAS  Google Scholar 

  13. Tusch, J. et al. Long-term preservation of Hadean protocrust in Earth’s mantle. Proc. Natl Acad. Sci. USA 119, e2120241119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ireland, T. J., Walker, R. J. & Brandon, A. D. 186Os-187Os systematics of Hawaiian picrites revisited: new insights into Os isotopic variations in ocean island basalts. Geochim. Cosmochim. Acta 75, 4456–4475 (2011).

    Article  ADS  CAS  Google Scholar 

  15. Bennett, V. C., Norman, M. D. & Garcia, M. O. Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites: sulphides in the plume. Earth Planet. Sci. Lett. 183, 513–526 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).

    Article  CAS  Google Scholar 

  17. Kaare-Rasmussen, J. et al. Tungsten isotopes in Baffin Island lavas: evidence of Iceland plume evolution. Geochem. Perspect. Lett. 28, 7–12 (2023).

    Article  Google Scholar 

  18. Walker, R. J. et al. 182W and 187Os constraints on the origin of siderophile isotopic heterogeneity in the mantle. Geochim. Cosmochim. Acta 363, 15–39 (2023).

    Article  ADS  CAS  Google Scholar 

  19. Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chou, C. L. Fractionation of siderophile elements in the Earth’s upper mantle. In Proc. 9th Lunar and Planetary Science Conference 219–230 (Pergamon Press, 1978).

  21. Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).

    Article  ADS  CAS  Google Scholar 

  22. Stubbs, D. The Tungsten Isotopic Evolution of the Silicate Earth 143–217. PhD thesis, Univ. of Bristol (2021).

  23. Bermingham, K. R. & Walker, R. J. The ruthenium isotopic composition of the oceanic mantle. Earth Planet. Sci. Lett. 474, 466–473 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dauphas, N., Hopp, T. & Nesvorný, D. Bayesian inference on the isotopic building blocks of Mars and Earth. Icarus 408, 115805 (2024).

    Article  CAS  Google Scholar 

  25. Render, J., Brennecka, G. A., Burkhardt, C. & Kleine, T. Solar System evolution and terrestrial planet accretion determined by Zr isotopic signatures of meteorites. Earth Planet. Sci. Lett. 595, 117748 (2022).

    Article  CAS  Google Scholar 

  26. Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    Article  ADS  Google Scholar 

  27. Fischer-Gödde, M. & Kleine, T. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–527 (2017).

    Article  ADS  PubMed  Google Scholar 

  28. Touboul, M., Puchtel, I. S. & Walker, R. J. 182W Evidence for long-term preservation of early mantle differentiation products. Science 355, 1065–1069 (2012).

    Article  ADS  Google Scholar 

  29. McDonough, W. F. in Treatise on Geochemistry Vol. 2 (eds Holland H. D. & Turekian, K. K.) 547–568 (Elsevier, 2003).

  30. Waters, C. L. et al. Sulfide mantle source heterogeneity recorded in basaltic lavas from the Azores. Geochim. Cosmochim. Acta 268, 422–445 (2020).

    Article  ADS  CAS  Google Scholar 

  31. Day, J. M. D. Hotspot volcanism and highly siderophile elements. Chem. Geol. 341, 50–74 (2013).

    Article  ADS  CAS  Google Scholar 

  32. Mungall, J. & Brenan, J. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta 125, 265–289 (2014).

    Article  ADS  CAS  Google Scholar 

  33. Badro, J., Siebert, J. & Nimmo, F. An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536, 326–328 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chabot, N. L., Wollack, E. A., Humayun, M. & Shank, E. M. The effect of oxygen as a light element in metallic liquids on partitioning behavior. Meteorit. Planet. Sci. 50, 530–546 (2015).

    Article  ADS  CAS  Google Scholar 

  35. Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).

    Article  ADS  CAS  Google Scholar 

  36. Suer, T. A. et al. Reconciling metal–silicate partitioning and late accretion in the Earth. Nat. Commun. 12, 2913 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled 182W-142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17, 2168–2193 (2016).

    Article  ADS  CAS  Google Scholar 

  38. de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. 142Nd/144Nd inferences on the nature and origin of the source of high 3He/4He magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).

    Article  ADS  Google Scholar 

  39. Horan, M. F. et al. Tracking Hadean processes in modern basalts with 142-Neodymium. Earth Planet. Sci. Lett. 484, 184–191 (2018).

    Article  ADS  CAS  Google Scholar 

  40. Jackson, M. G. & Carlson, R. W. Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem. Geophys. Geosyst. 13, Q06011 (2012).

    Article  ADS  Google Scholar 

  41. Chen, K. et al. Platinum-group element abundances and Re–Os isotopic systematics of the upper continental crust through time: evidence from glacial diamictites. Geochim. Cosmochim. Acta 191, 1–16 (2016).

    Article  ADS  CAS  Google Scholar 

  42. Becker, H. et al. Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006).

    Article  ADS  CAS  Google Scholar 

  43. Hopp, T., Budde, G. & Kleine, T. Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics. Earth Planet. Sci. Lett. 534, 116065 (2020).

    Article  CAS  Google Scholar 

  44. Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).

    Article  CAS  Google Scholar 

  45. Jansen, M. W. et al. Upper mantle control on the W isotope record of shallow level plume and intraplate volcanic settings. Earth Planet. Sci. Lett. 585, 117507 (2022).

    Article  CAS  Google Scholar 

  46. Helz, R. T. & Wright, T. L. Drilling Report and Core Logs of the 1981 Drilling of Kilauea Iki Lava Lake. Open-file report 83-326 (USGS, 1981).

  47. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).

    Article  ADS  CAS  Google Scholar 

  48. Kent, A. J. R. et al. Widespread assimilation of a seawater-derived component at Loihi seamount, Hawaii. Geochim. Cosmochim. Acta 63, 2749–2761 (1999).

    Article  ADS  CAS  Google Scholar 

  49. Mukhopadhyay, S., Lassiter, J. C., Farley, K. A. & Bogue, S. W. Geochemistry of Kauai shield-stage lavas: implications for the chemical evolution of the Hawaiian plume. Geochem. Geophys. Geosyst. 4, 1009 (2003).

    Article  ADS  Google Scholar 

  50. Cross, W. Lavas of Hawaii and their Relations. USGS professional paper 88 (USGS, 1915).

  51. Roden, M. F., Trull, T., Hart, S. R. & Frey, F. A. New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume: results from Koolau Volcano, Oahu, Hawaii, USA. Geochim. Cosmochim. Acta 58, 1431–1440 (1994).

    Article  ADS  CAS  Google Scholar 

  52. Appel, H., Wörner, G., Alvarado, G., Rundle, C. & Kussmaul, S. Age relations in igneous rocks from Costa Rica. Profil 7, 63–69 (1994).

    Google Scholar 

  53. Messling, N., Wörner, G. & Willbold, M. Ancient mantle plume components constrained by tungsten isotope variability in arc lavas. Geochem. Perspect. Lett. 26, 31–35 (2023).

    Article  Google Scholar 

  54. Schmincke, H. U. & Sunkel, G. Carboniferous submarine volcanism at Herbornseelbach (Lahn-Dill area, Germany). Geol. Rundschau 76, 709–734 (1987).

    Article  ADS  CAS  Google Scholar 

  55. Nutman, A. P., Bennett, V. C., Friend, C. R. L. & Yi, K. Eoarchean contrasting ultra-high-pressure to low-pressure metamorphisms (<250 to >1000 °C/GPa) explained by tectonic plate convergence in deep time. Precambrian Res. 344, 105770 (2020).

    Article  CAS  Google Scholar 

  56. Waterton, P. et al. No mantle residues in the Isua Supracrustal Belt. Earth Planet. Sci. Lett. 579, 117348 (2022).

    Article  CAS  Google Scholar 

  57. Zuo, J. et al. Earth’s earliest phaneritic ultramafic rocks: mantle slices or crustal cumulates? Geochem. Geophys. Geosyst. 23, e2022GC010519 (2022).

    Article  ADS  Google Scholar 

  58. Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S. & Kleine, T. Ru isotope heterogeneity in the solar protoplanetary disk. Geochim. Cosmochim. Acta 168, 151–171 (2015).

    Article  ADS  Google Scholar 

  59. Hopp, T., Fischer-Gödde, M. & Kleine, T. Ruthenium isotope fractionation in protoplanetary cores. Geochim. Cosmochim. Acta 223, 75–89 (2018).

    Article  ADS  CAS  Google Scholar 

  60. Avtokratova, T. D. in Analytical Chemistry of Ruthenium Ch. 4, 131–157 (1963).

  61. Yoshida, N., Ono, T., Yoshida, R., Amano, Y. & Abe, H. Decomposition behavior of gaseous ruthenium tetroxide under atmospheric conditions assuming evaporation to dryness accident of high-level liquid waste. J. Nucl. Sci. Technol. 57, 1256–1264 (2020).

    Article  CAS  Google Scholar 

  62. Koda, Y. Distillation of ruthenium tetraoxide with volatile acids. J. Inorg. Nucl. Chem. 25, 314–315 (1963).

    Article  CAS  Google Scholar 

  63. Chen, J. H., Papanastassiou, D. A. & Wasserburg, G. J. Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochim. Cosmochim. Acta 74, 3851–3862 (2010).

    Article  ADS  CAS  Google Scholar 

  64. Tusch, J. et al. Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: the role of early silicate differentiation and missing late veneer. Geochim. Cosmochim. Acta 257, 284–310 (2019).

    Article  ADS  CAS  Google Scholar 

  65. Budde, G., Archer, G. J., Tissot, F. L. H., Tappe, S. & Kleine, T. Origin of the analytical 183 W effect and its implications for tungsten isotope analyses. J. Anal. At. Spectrom. 37, 2005–2021 (2022).

    Article  CAS  Google Scholar 

  66. Kruijer, T. S. & Kleine, T. No 182W excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).

    Article  ADS  CAS  Google Scholar 

  67. Peters, B. J., Mundl-Petermeier, A., Carlson, R. W., Walker, R. J. & Day, J. M. D. Combined lithophile-siderophile isotopic constraints on Hadean processes preserved in Ocean Island basalt sources. Geochem. Geophys. Geosyst. 22, e2020GC009479 (2021).

    Article  ADS  CAS  Google Scholar 

  68. Savina, M. R. et al. Extinct technetium in silicon carbide stardust grains: implications for stellar nucleosynthesis. Science 303, 649–653 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Hopp, T., Fischer-Gödde, M. & Kleine, T. Ruthenium stable isotope measurements by double spike MC-ICPMS. J. Anal. At. Spectrom. 31, 1515–1526 (2016).

    Article  CAS  Google Scholar 

  70. Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem. Geol. 280, 365–383 (2011).

    Article  ADS  Google Scholar 

  71. Palme, H. & O’Neill, H. S. Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry 2nd edn, Vol. 3 (eds Turekian, K. K. & Holland, H. D.) 1–39 (Elsevier, 2014).

  72. Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochim. Cosmochim. Acta 74, 356–379 (2010).

    Article  ADS  Google Scholar 

  73. Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N. & Rubin, A. E. Highly siderophile elements in chondrites. Chem. Geol. 196, 27–42 (2003).

    Article  ADS  Google Scholar 

Download references

Read Entire Article