Run 35B LLMs on Dual Pascal GPUs with QLoRA

1 month ago 4

Hi HN,

I built a system to run 35B parameter language models on older Pascal GPUs (P100 + GTX 1080 Ti) using multi-GPU memory spillover. Problem: Most LLM inference tools (Ollama, LM Studio) are limited to single GPU VRAM (~13B models max on a 16GB GPU). If you have multiple older GPUs, the second one sits idle. Solution: Multi-GPU + CPU memory spillover with QLoRA 4-bit quantization. The system automatically distributes layers across GPU0 → GPU1 → CPU RAM, enabling 35B models on hardware that normally maxes at 13B. Benchmarks (P100 16GB + GTX 1080 Ti 11GB): - Qwen-14B: 13.7 tokens/sec (9.4GB VRAM) - OPT-30B: 5.4 tokens/sec (15.2GB VRAM) - CodeLlama-34B: 0.8 tokens/sec (16.7GB VRAM) Quick start: docker pull rickeshtn/large-model-international_release:latest docker run -it --rm --runtime=nvidia --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=268435456 -v $(pwd):/workspace -e HF_HOME=/workspace/model_cache rickeshtn/large-model-international_release:latest python /app/interactive_chat.py --model-name Qwen/Qwen2.5-14B-Instruct Technical details: - QLoRA 4-bit NF4 quantization (75% memory reduction) - HuggingFace Transformers + Accelerate + bitsandbytes - Automatic device mapping with CPU offload - Interactive chat with conversation persistence GitHub: https://github.com/rickeshtn/locallm-pascal Docker Hub: https://hub.docker.com/r/rickeshtn/large-model-international_release 34 users already running it. Happy to answer technical questions!
Read Entire Article