Sex differences in depression revealed by large genetics study

3 days ago 1
  • NEWS AND VIEWS
  • 22 October 2025

A comprehensive genome analysis suggests that women have more genetic risk variants for major depressive disorder than do men, with stronger links to metabolic traits.

By

  1. Na Cai
    1. Na Cai is in the Department of Biosystems and Engineering, ETH Zürich, Basel 4056, Switzerland.

Major depressive disorder (MDD) affects nearly twice as many women as it does men, but the biological reasons for this disparity are elusive. Writing in Nature Communications, Thomas et al.1 report a meta-analysis of genome-wide association studies (GWASs) — an approach for finding links between genetic variations and observable traits — that includes almost 200,000 men and women with MDD. The researchers’ findings begin to unpick the genetic risk factors that are shared (or not) between men and women, and to explain why subtypes of MDD with metabolic symptoms, such as changes in weight, affect women more than men. Importantly, the results highlight how sex-stratified genetic analyses can help scientists to understand the sex-specific pathology of MDD, which is necessary for guiding more-precise treatments in the future. (This article separates people into ‘male’ and ‘female’ to reflect the use in Thomas and colleagues’ paper, but Nature recognizes that sex and gender are not binary and are not necessarily aligned.)

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$32.99 / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

doi: https://doi.org/10.1038/d41586-025-03374-0

References

  1. Thomas, J. T. et al. Nature Commun. 16, 7960 (2025).

    Article  PubMed  Google Scholar 

  2. Martin, J. et al. Biol. Psychiatry 83, 1044–1053 (2018).

    Article  PubMed  Google Scholar 

  3. Blokland, G. A. M. et al. Biol. Psychiatry 91, 102–117 (2022).

    Article  PubMed  Google Scholar 

  4. Silveira, P. P., Pokhvisneva, I., Howard, D. M. & Meaney, M. J. Mol. Psychiatry 28, 2469–2479 (2023).

    Article  PubMed  Google Scholar 

  5. Howard, D. M. et al. Nature Commun. 9, 1470 (2018).

    Article  PubMed  Google Scholar 

  6. Kendler, K. S., Gardner, C. O., Gatz, M. & Pedersen, N. L. Psychol. Med. 37, 453–462 (2007).

    Article  PubMed  Google Scholar 

  7. Kendler, K. S., Gardner, C. O., Neale, M. C. & Prescott, C. A. Psychol. Med. 31, 605–616 (2001).

    Article  PubMed  Google Scholar 

  8. Cai, N. et al. Nature Genet. 52, 437–447 (2020).

    Article  PubMed  Google Scholar 

  9. Warrier, V. et al. Lancet Psychiatry 8, 373–386 (2021).

    Article  PubMed  Google Scholar 

  10. Trubetskoy, V. et al. Nature 604, 502–508 (2022).

    Article  PubMed  Google Scholar 

  11. Jansen, P. R. et al. Nature Genet. 51, 394–403 (2019).

    Article  PubMed  Google Scholar 

  12. Okbay, A. et al. Nature Genet. 54, 437–449 (2022).

    Article  PubMed  Google Scholar 

  13. Venkatesh, S. S. et al. Nature Genet. 57, 1107–1118 (2025).

    Article  PubMed  Google Scholar 

  14. Oliva, M. et al. Science 369, eaba3066 (2020).

    Article  PubMed  Google Scholar 

  15. Jones, A. G. et al. Preprint at medRxiv https://doi.org/10.1101/2024.09.03.24313025 (2025).

  16. Zhu, C. et al. Cell Genom. 3, 100297 (2023).

    Article  PubMed  Google Scholar 

  17. Kendler, K. S. & Gardner, C. O. Br. J. Psychiatry 197, 170–171 (2010).

    Article  PubMed  Google Scholar 

Download references

Competing Interests

The author declares no competing interests.

Subjects

Latest on:

Read Entire Article