Show HN: Easily visualize torch, Jax, tf, NumPy, etc. tensors

4 hours ago 1

example diagram

A python library for visualizing tensors from torch, jax, tensorflow, numpy, etc. Helps with learning and debugging in notebooks and other contexts. It's built on top of the graphics backend, chalk.

Debugging deep learning code is hard—especially when it's foreign, because it's hard to imagine tensor manipulations, e.g. F.conv2d(x.unsqueeze(1), w.transpose(-1, -2)).squeeze().view(B, L, -1) in your head. Printing shapes and tensor values only gets you so far. tensordiagram lets me easily represent tensors visually, inside python code, notebooks, and interpreter sessions.

Other python libraries for creating tensor diagrams are either too physics and math focused, not notebook-friendly, limited to visualizing single tensors, and/or serve a wider purpose (so have a steep learning curve).

pip install tensordiagram

Separately, you'll need to install cairo for png images:

# might need to install the base library first on debian sudo apt-get install libcairo2-dev # cairo python bindings pip install ".[cairo]"

Or, for svg images:

For an in-depth guide, refer to this notebook.

import numpy as np import tensordiagram as td tensor = np.arange(12).reshape(3, 4) diagram = td.to_diagram(tensor)

plain 3x4 matrix

The diagram can be saved using render_png or render_svg:

diagram.render_png("output.png", height=300)

Style and annotate diagrams:

diagram \ .fill_values() \ .fill_color("lightblue") \ .annotate_dim_size(dim="row", color="lightgreen")

styled 3x4 matrix

3d tensor:

papaya = "#ff9700" tensor = np.arange(24).reshape((2, 3, 4)) diagram = td.to_diagram(tensor).fill_color(papaya)

3d tensor

Combine tensor and chalk diagrams for intricate outputs:

import random import torch color_names = [ "red", "blue", "green", "purple", "orange", "pink", "cyan"] def random_colors_tensor(shape): colors_array = np.empty(shape, dtype=object) for index, _ in np.ndenumerate(colors_array): colors_array[index] = random.choice(color_names) return colors_array color_tensor = random_colors_tensor(shape=(2, 3, 4)) # tensors t = torch.arange(24).reshape((2, 3, 4)) slice_1 = t[0, :, :].unsqueeze(0) slice_2 = t[:, 1, :].unsqueeze(1) # tensor diagrams t_d = td.to_diagram(t).fill_color(lambda idx, v: color_tensor[idx]) slice_1_d = td.to_diagram(slice_1).fill_color(lambda idx, v: color_tensor[idx]) slice_2_d = td.to_diagram(slice_2).fill_color(lambda idx, v: color_tensor[idx[0], 1, idx[2]]) # chalk diagrams diagrams = [] for d in [t_d, slice_1_d, slice_2_d]: diagrams.append(d.to_chalk_diagram().center_xy()) # composite diagram composite = chalk.hcat(diagrams, 1.0) # add background + display composite = composite.pad(1.5).center_xy() env = composite.get_envelope() chalk.set_svg_height(300) chalk.rectangle(env.width * 0.8, env.height).fill_color(Color("white")) + composite.translate(dx=env.width * 0.1, dy=0)

complex diagram

For more examples and documentation, refer to this guide.

Visual regression tests compare rendered output against reference images stored in fixtures/.

To generate or update reference images:

# all reference images python tests/generate_references.py --all # list reference images python tests/generate_references.py --list # select reference images python tests/generate_references.py 3d_tensor styled_gradient

All tests:

MIT

Read Entire Article