Show HN: LLM Loop - An autonomous task execution plugin for the LLM CLI tool

6 days ago 2

An autonomous task execution plugin for the LLM CLI tool

llm loop is a powerful plugin for the LLM CLI tool that enables autonomous, goal-oriented task execution. Unlike traditional single-turn LLM interactions, llm loop allows the AI to work persistently towards a goal by making multiple tool calls, analyzing results, and iterating until the task is complete.

llm-loop-demo

  • Goal-Oriented Execution: Define a task and let the AI work autonomously to complete it
  • Tool Integration: Seamlessly use LLM tools and functions to interact with your environment
  • Iterative Problem Solving: The AI can chain multiple tool calls and adapt based on results
  • Interactive Control: Configure turn limits, approve tool calls, and guide the process
  • Comprehensive Logging: Track all interactions and tool calls for debugging and analysis
  • Safety Features: Built-in approval mechanisms for potentially dangerous operations
  1. Install LLM CLI globally (recommended using uv):

    Or using pipx:

  2. Configure an LLM model (you'll need an API key):

    # For OpenAI llm keys set openai llm models default gpt-4.1-mini # For Anthropic llm keys set anthropic llm models default claude-3-5-sonnet-20241022

Option 1: Install from PyPI (Recommended for most users)

Once the plugin is available on PyPI, you can install it directly using llm or pip:

# Using llm (recommended) llm install llm-loop-plugin # Or using pip pip install llm-loop-plugin

Option 2: Install from source (for development or latest changes)

  1. Clone this repository:

    git clone https://github.com/nibzard/llm-loop cd llm-loop
  2. Install the plugin:

    # For regular use from source llm install -e . # For development (includes dev dependencies like pytest, ruff, mypy) pip install -e ".[dev]"
  3. Verify installation:

# Simple example with default prompt llm loop # Custom task llm loop "Create a Python script that analyzes a CSV file" # With specific model llm loop "Build a simple web server" -m gpt-4o # Limit iterations llm loop "Write unit tests for my code" --max-turns 5

Tools are what make llm loop powerful. You can use existing LLM tools or create custom functions:

# Using built-in or installed tools llm loop "Analyze the current directory structure" -T filesystem # Using custom Python functions llm loop "Create a Flask app" --functions dev_tools.py # Multiple tools llm loop "Set up a git repository and make initial commit" \ -T filesystem -T shell --tools-approve
Option Description
-m, --model Specify the LLM model to use
-s, --system Override the default system prompt
-T, --tool Enable specific tools (can be used multiple times)
--functions Python file containing custom tool functions
--max-turns Maximum conversation turns (default: 25)
--td, --tools-debug Show detailed tool execution information
--ta, --tools-approve Manually approve each tool call
--internal-cl Chain limit for tool calls within a single turn
--no-log Disable logging to database
--log Force logging even if globally disabled

Example 1: Create a Flask Web Application

Create a simple tool file first. Note: With the refactoring, dev_tools.py has been moved to llm_loop/plugins/dev_tools.py. The plugin will automatically discover tools from this location if you are running from the project root or have installed the package. For custom tool files outside the package, you still use the --functions flag.

The example dev_tools.py content remains relevant:

# llm_loop/plugins/dev_tools.py import os import pathlib def write_file(file_path: str, content: str) -> str: """Write content to a file, creating directories if needed.""" try: p = pathlib.Path(file_path) p.parent.mkdir(parents=True, exist_ok=True) with open(p, "w", encoding="utf-8") as f: f.write(content) return f"Successfully wrote {file_path}" except Exception as e: return f"Error writing {file_path}: {e}" def read_file(file_path: str) -> str: """Read and return file contents.""" try: with open(file_path, "r", encoding="utf-8") as f: return f.read() except Exception as e: return f"Error reading {file_path}: {e}" def list_directory(path: str = ".") -> str: """List directory contents.""" try: items = os.listdir(path) return "\n".join(items) if items else f"Directory {path} is empty" except Exception as e: return f"Error listing {path}: {e}"

Now run the loop:

mkdir my_flask_app && cd my_flask_app llm loop "Create a Flask web application with a homepage and about page" \ --functions ../dev_tools.py \ --tools-debug \ --max-turns 10

Make sure to adjust the path to dev_tools.py if you are not in my_flask_app directory and dev_tools.py is not in the parent directory. If you've installed the package in development mode (pip install -e ".[dev]"), llm-loop will attempt to load tools from llm_loop/plugins/dev_tools.py automatically if no --functions flag is provided and the built-in tools are not sufficient.

The AI will:

  1. Create app.py with Flask routes
  2. Create HTML templates
  3. Generate a requirements.txt
  4. Provide instructions for running the app

Example 2: Code Analysis and Documentation

llm loop "Analyze all Python files in this project and generate comprehensive documentation" \ --functions llm_loop/plugins/dev_tools.py \ -T filesystem \ --max-turns 15

This assumes you are running the command from the root of the llm-loop project. If running from elsewhere after installation, and dev_tools.py is part of the installed package, you might not need --functions if those tools are made available by default.

Example 3: Git Repository Setup (with approval)

llm loop "Initialize a git repository, create .gitignore, and make initial commit" \ --functions llm_loop/plugins/dev_tools.py \ --tools-approve \ --max-turns 5

Similar to the above, adjust paths or rely on automatic discovery if applicable.

You can override the default system prompt to customize the AI's behavior:

llm loop "Build a REST API" \ --system "You are a senior backend developer. Focus on best practices, error handling, and clean code architecture." \ --functions dev_tools.py

Use --tools-debug to see exactly what tools are being called:

llm loop "Create a Python package structure" \ --functions llm_loop/plugins/dev_tools.py \ --tools-debug

Safety with Tool Approval

For potentially dangerous operations, use --tools-approve:

llm loop "Clean up old files and optimize the project structure" \ --functions llm_loop/plugins/dev_tools.py \ --tools-approve

The llm-loop project has been refactored into a modular Python package:

llm_loop/ ├── __init__.py # Package entry point ├── cli.py # Click command interface ├── core/ │ ├── __init__.py │ ├── conversation.py # ConversationManager class │ ├── tools.py # Tool provider system │ └── prompts.py # System prompt templates ├── config/ │ ├── __init__.py │ └── settings.py # Configuration management ├── utils/ │ ├── __init__.py │ ├── logging.py # Database logging utilities │ ├── validation.py # Input validation and sanitization │ ├── exceptions.py # Custom exception classes │ └── types.py # Type definitions └── plugins/ ├── __init__.py └── dev_tools.py # Default development tools (can be extended)

This structure promotes separation of concerns, maintainability, and scalability.

  • LLM_MODEL: Default model to use
  • LLM_TOOLS_DEBUG: Enable tools debugging by default
  • LLM_LOGS_OFF: Disable logging by default

All interactions are logged to an SQLite database by default:

  • Location: ~/.config/io.datasette.llm/logs.db
  • Disable with --no-log
  • Force enable with --log
  1. Tool Approval: Always use --tools-approve for tools that can modify your system
  2. Limited Scope: Run in dedicated directories for file operations
  3. Review Tools: Understand what each tool function does before using it
  4. Backup Important Data: Especially when using file manipulation tools

Plugin not found after installation:

# Reinstall the plugin llm install -e . # Check if it's loaded llm --help | grep loop

Tool import errors:

  • Ensure your tool functions have proper error handling
  • Check that file paths in --functions are correct
  • Verify Python syntax in your tool files

Model errors:

# Check available models llm models list # Set a working default llm models default gpt-4.1-mini
  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

This project is licensed under the MIT License - see the LICENSE file for details.

  • Built on the excellent LLM CLI tool by Simon Willison
  • Inspired by autonomous AI agent frameworks
  • Thanks to the LLM tool ecosystem contributors

Note: This plugin enables powerful autonomous AI behavior. Always review and understand the tools you're providing to the AI, especially those that can modify files or execute system commands.

Read Entire Article