Show HN: Painless structured data from LLMs in Rust: rstructor
4 days ago
1
rstructor is a Rust library for extracting structured data from Large Language Models (LLMs) with built-in validation. Define your schemas as Rust structs/enums, and rstructor will handle the rest—generating JSON Schemas, communicating with LLMs, parsing responses, and validating the results.
Think of it as the Rust equivalent of Instructor + Pydantic for Python, bringing the same structured output capabilities to the Rust ecosystem.
If you're coming from Python and searching for:
"pydantic rust" or "rust pydantic" → rstructor provides similar schema validation and type safety
"instructor rust" or "rust instructor" → rstructor offers the same structured LLM output extraction
"structured output rust" or "llm structured output rust" → this is exactly what rstructor does
"type-safe llm rust" → rstructor ensures type safety from LLM responses to Rust structs
rstructor brings the familiar Python patterns you know from Instructor and Pydantic to Rust, with the added benefits of Rust's type system and performance.
📝 Type-Safe Definitions: Define data models as standard Rust structs/enums with attributes
🔄 JSON Schema Generation: Auto-generates JSON Schema from your Rust types
✅ Built-in Validation: Type checking plus custom business rule validation
🔌 Multiple LLM Providers: Support for OpenAI, Anthropic, Grok (xAI), and Gemini (Google), with an extensible backend system
🧩 Complex Data Structures: Support for nested objects, arrays, optional fields, and deeply nested enums
🧠 Schema Fidelity: Heuristic-free JSON Schema generation that preserves nested struct and enum detail
🔁 Async API: Fully asynchronous API for efficient operations
⚙️ Builder Pattern: Fluent API for configuring LLM clients (temperature retries, timeouts, etc)
📊 Feature Flags: Optional backends via feature flags
Add rstructor to your Cargo.toml:
[dependencies]
rstructor = "0.1.0"serde = { version = "1.0", features = ["derive"] }
tokio = { version = "1.0", features = ["rt-multi-thread", "macros"] }
Here's a simple example of extracting structured information about a movie from an LLM:
use rstructor::{Instructor,LLMClient,OpenAIClient,OpenAIModel};use serde::{Serialize,Deserialize};use std::env;use std::time::Duration;// Define your data model#[derive(Instructor,Serialize,Deserialize,Debug)]structMovie{#[llm(description = "Title of the movie")]title:String,#[llm(description = "Director of the movie")]director:String,#[llm(description = "Year the movie was released", example = 2010)]year:u16,#[llm(description = "Brief plot summary")]plot:String,}#[tokio::main]asyncfnmain() -> Result<(),Box<dyn std::error::Error>>{// Get API key from environmentlet api_key = env::var("OPENAI_API_KEY")?;// Create an OpenAI clientlet client = OpenAIClient::new(api_key)?
.model(OpenAIModel::Gpt4OMini).temperature(0.0).timeout(Duration::from_secs(30));// Optional: set 30 second timeout// Generate structured information with a simple prompt// For production use, configure retries with .max_retries() / .include_error_feedback()let movie:Movie = client.materialize("Tell me about the movie Inception").await?;// Use the structured dataprintln!("Title: {}", movie.title);println!("Director: {}", movie.director);println!("Year: {}", movie.year);println!("Plot: {}", movie.plot);Ok(())}
Production Example with Automatic Retry
For production use, configure the client with retry options so it automatically retries on validation errors:
use rstructor::{Instructor,LLMClient,OpenAIClient,OpenAIModel};use std::time::Duration;use serde::{Serialize,Deserialize};#[derive(Instructor,Serialize,Deserialize,Debug)]#[llm(description = "Information about a movie")]structMovie{#[llm(description = "Title of the movie")]title:String,#[llm(description = "Year the movie was released", example = 2010)]year:u16,#[llm(description = "IMDB rating out of 10", example = 8.5)]rating:f32,}// Configure the client to automatically retry validation errorslet client = client
.max_retries(3)// retry up to 3 times on validation errors.include_error_feedback(true);// include validation feedback in retry promptslet movie:Movie = client.materialize::<Movie>("Tell me about Inception").await?;
Basic Example with Validation
Add custom validation rules to enforce business logic beyond type checking:
use rstructor::{Instructor,LLMClient,OpenAIClient,OpenAIModel,RStructorError,Result};use serde::{Serialize,Deserialize};#[derive(Instructor,Serialize,Deserialize,Debug)]#[llm(description = "Information about a movie")]structMovie{#[llm(description = "Title of the movie")]title:String,#[llm(description = "Year the movie was released", example = 2010)]year:u16,#[llm(description = "IMDB rating out of 10", example = 8.5)]rating:f32,}// Add custom validationimplMovie{fnvalidate(&self) -> Result<()>{// Title can't be emptyifself.title.trim().is_empty(){returnErr(RStructorError::ValidationError("Movie title cannot be empty".to_string()));}// Year must be in a reasonable rangeifself.year < 1888 || self.year > 2030{returnErr(RStructorError::ValidationError(format!("Movie year must be between 1888 and 2030, got {}",self.year)));}// Rating must be between 0 and 10ifself.rating < 0.0 || self.rating > 10.0{returnErr(RStructorError::ValidationError(format!("Rating must be between 0 and 10, got {}",self.rating)));}Ok(())}}// The derive macro automatically wires this method into the generated implementation,// so you won't see `dead_code` warnings even if the method is only called by rstructor.
Complex Nested Structures
rstructor supports complex nested data structures:
use rstructor::{Instructor,LLMClient,OpenAIClient,OpenAIModel};use std::time::Duration;use serde::{Serialize,Deserialize};// Define a nested data model for a recipe#[derive(Instructor,Serialize,Deserialize,Debug)]structIngredient{#[llm(description = "Name of the ingredient", example = "flour")]name:String,#[llm(description = "Amount of the ingredient", example = 2.5)]amount:f32,#[llm(description = "Unit of measurement", example = "cups")]unit:String,}#[derive(Instructor,Serialize,Deserialize,Debug)]structStep{#[llm(description = "Order number of this step", example = 1)]number:u16,#[llm(description = "Description of this step", example = "Mix the flour and sugar together")]description:String,}#[derive(Instructor,Serialize,Deserialize,Debug)]#[llm(description = "A cooking recipe with ingredients and instructions")]structRecipe{#[llm(description = "Name of the recipe", example = "Chocolate Chip Cookies")]name:String,#[llm(description = "List of ingredients needed")]ingredients:Vec<Ingredient>,#[llm(description = "Step-by-step cooking instructions")]steps:Vec<Step>,}// Usage:// let recipe: Recipe = client.materialize("Give me a recipe for chocolate chip cookies").await?;
rstructor supports both simple enums and enums with associated data.
Use enums for categorical data:
use rstructor::{Instructor,LLMClient,AnthropicClient,AnthropicModel};use serde::{Serialize,Deserialize};// Define an enum for sentiment analysis#[derive(Instructor,Serialize,Deserialize,Debug)]#[llm(description = "The sentiment of a text")]enumSentiment{#[llm(description = "Positive or favorable sentiment")]Positive,#[llm(description = "Negative or unfavorable sentiment")]Negative,#[llm(description = "Neither clearly positive nor negative")]Neutral,}#[derive(Instructor,Serialize,Deserialize,Debug)]structSentimentAnalysis{#[llm(description = "The text to analyze")]text:String,#[llm(description = "The detected sentiment of the text")]sentiment:Sentiment,#[llm(description = "Confidence score between 0.0 and 1.0", example = 0.85)]confidence:f32,}// Usage:// let analysis: SentimentAnalysis = client.materialize("Analyze the sentiment of: I love this product!").await?;
Enums with Associated Data (Tagged Unions)
rstructor also supports more complex enums with associated data:
use rstructor::{Instructor,SchemaType};use serde::{Deserialize,Serialize};// Enum with different types of associated data#[derive(Instructor,Serialize,Deserialize,Debug)]enumUserStatus{#[llm(description = "The user is online")]Online,#[llm(description = "The user is offline")]Offline,#[llm(description = "The user is away with an optional message")]Away(String),#[llm(description = "The user is busy until a specific time in minutes")]Busy(u32),}// Using struct variants for more complex associated data#[derive(Instructor,Serialize,Deserialize,Debug)]enumPaymentMethod{#[llm(description = "Payment with credit card")]Card{#[llm(description = "Credit card number")]number:String,#[llm(description = "Expiration date in MM/YY format")]expiry:String,},#[llm(description = "Payment via PayPal account")]PayPal(String),#[llm(description = "Payment will be made on delivery")]CashOnDelivery,}// Usage:// let user_status: UserStatus = client.materialize("What's the user's status?").await?;
Nested Enums Across Structs
Enums can be freely nested inside other enums and structs—#[derive(Instructor)] now
generates the correct schema without requiring manual SchemaType implementations:
#[derive(Instructor,Serialize,Deserialize,Debug)]enumTaskState{#[llm(description = "Task is pending with a priority level")]Pending{priority:Priority},#[llm(description = "Task is in progress")]InProgress{priority:Priority,status:Status},#[llm(description = "Task is completed")]Completed{status:Status},}#[derive(Instructor,Serialize,Deserialize,Debug)]structTask{#[llm(description = "Task title")]title:String,#[llm(description = "Current task state with nested enums")]state:TaskState,}// Works automatically – TaskState::schema() includes the nested enum structure.
See examples/nested_enum_example.rs for a complete runnable walkthrough that
also exercises deserialization of nested enum variants.
When serialized to JSON, these enum variants with data become tagged unions:
rstructor provides the CustomTypeSchema trait to handle types that don't have direct JSON representations but need specific schema formats. This is particularly useful for:
Date/time types (e.g., chrono::DateTime)
UUIDs (e.g., uuid::Uuid)
Email addresses
URLs
Custom domain-specific types
use rstructor::{Instructor, schema::CustomTypeSchema};use serde::{Serialize,Deserialize};use chrono::{DateTime,Utc};use serde_json::json;use uuid::Uuid;// Implement CustomTypeSchema for chrono::DateTime<Utc>implCustomTypeSchemaforDateTime<Utc>{fnschema_type() -> &'staticstr{"string"}fnschema_format() -> Option<&'staticstr>{Some("date-time")}fnschema_description() -> Option<String>{Some("ISO-8601 formatted date and time".to_string())}}// Implement CustomTypeSchema for UUIDimplCustomTypeSchemaforUuid{fnschema_type() -> &'staticstr{"string"}fnschema_format() -> Option<&'staticstr>{Some("uuid")}}
Once implemented, these custom types can be used directly in your structs:
#[derive(Instructor,Serialize,Deserialize,Debug)]structEvent{#[llm(description = "Unique identifier for the event")]id:Uuid,#[llm(description = "Name of the event")]name:String,#[llm(description = "When the event starts")]start_time:DateTime<Utc>,#[llm(description = "When the event ends (optional)")]end_time:Option<DateTime<Utc>>,#[llm(description = "Recurring event dates")]recurring_dates:Vec<DateTime<Utc>>,// Even works with arrays!}
You can add additional schema properties for more complex validation:
The macro automatically detects these custom types and generates appropriate JSON Schema with format specifications that guide LLMs to produce correctly formatted values. The library includes built-in recognition of common date and UUID types, but you can implement the trait for any custom type.
Configuring Different LLM Providers
Choose between different providers:
// Using OpenAIlet openai_client = OpenAIClient::new(openai_api_key)?
.model(OpenAIModel::Gpt5).temperature(0.2).max_tokens(1500).timeout(Duration::from_secs(60));// Optional: set 60 second timeout// Using Anthropiclet anthropic_client = AnthropicClient::new(anthropic_api_key)?
.model(AnthropicModel::ClaudeSonnet4).temperature(0.0).max_tokens(2000).timeout(Duration::from_secs(60));// Optional: set 60 second timeout// Using Grok (xAI) - reads from XAI_API_KEY environment variablelet grok_client = GrokClient::from_env()? // Reads from XAI_API_KEY env var.model(GrokModel::Grok4).temperature(0.0).max_tokens(1500).timeout(Duration::from_secs(60));// Optional: set 60 second timeout// Using Gemini (Google) - reads from GEMINI_API_KEY environment variablelet gemini_client = GeminiClient::from_env()? // Reads from GEMINI_API_KEY env var.model(GeminiModel::Gemini25Flash).temperature(0.0).max_tokens(1500).timeout(Duration::from_secs(60));// Optional: set 60 second timeout
Configuring Request Timeouts
All clients (OpenAIClient, AnthropicClient, GrokClient, and GeminiClient) support configurable timeouts for HTTP requests using the builder pattern:
use std::time::Duration;let client = OpenAIClient::new(api_key)?
.model(OpenAIModel::Gpt4O).temperature(0.0).timeout(Duration::from_secs(30));// Set 30 second timeout
Timeout Behavior:
The timeout applies to each HTTP request made by the client
If a request exceeds the timeout, it will return RStructorError::Timeout
If no timeout is specified, the client uses reqwest's default timeout behavior
Timeout values are specified as std::time::Duration (e.g., Duration::from_secs(30) or Duration::from_millis(2500))
#[derive(Instructor,Serialize,Deserialize,Debug)]#[llm(description = "Detailed information about a movie", title = "MovieDetails", examples = [::serde_json::json!({"title":"The Matrix","director":"Lana and Lilly Wachowski","year":1999,"genres":["Sci-Fi","Action"],"rating":8.7,"plot":"A computer hacker learns from mysterious rebels about the true nature of his reality and his role in the war against its controllers."})])]structMovie{// fields...}
The Instructor trait is the core of rstructor. It's implemented automatically via the derive macro and provides schema generation and validation:
Override the validate method to add custom validation logic.
The CustomTypeSchema trait allows you to define JSON Schema representations for types that don't have direct JSON equivalents, like dates and UUIDs:
pubtraitCustomTypeSchema{/// Returns the JSON Schema type for this custom type////// This is typically "string" for dates, UUIDs, etc.fnschema_type() -> &'staticstr;/// Returns the JSON Schema format for this custom type////// Common formats include "date-time", "uuid", "email", etc.fnschema_format() -> Option<&'staticstr>{None}/// Returns a description of this custom type for documentationfnschema_description() -> Option<String>{None}/// Returns any additional JSON Schema properties for this type////// This can include patterns, examples, minimum/maximum values, etc.fnschema_additional_properties() -> Option<Value>{None}/// Generate a complete JSON Schema object for this typefnjson_schema() -> Value{// Default implementation that combines all properties// (You don't normally need to override this)letmut schema = json!({"type":Self::schema_type(),});// Add format if presentifletSome(format) = Self::schema_format(){
schema.as_object_mut().unwrap().insert("format".to_string(),Value::String(format.to_string()));}// Add description if presentifletSome(description) = Self::schema_description(){
schema.as_object_mut().unwrap().insert("description".to_string(),Value::String(description));}// Add any additional propertiesifletSome(additional) = Self::schema_additional_properties(){// Merge additional properties into the schemaifletSome(additional_obj) = additional.as_object(){for(key, value)in additional_obj {
schema.as_object_mut().unwrap().insert(key.clone(), value.clone());}}}
schema
}}
Implement this trait for custom types like DateTime<Utc> or Uuid to control their JSON Schema representation. Most implementations only need to specify schema_type() and schema_format(), with the remaining methods providing additional schema customization when needed.
The LLMClient trait defines the interface for all LLM providers:
#[async_trait]pubtraitLLMClient{/// Materialize a structured object from a prompt.////// Configure retry behavior using `.max_retries()` and `.include_error_feedback()` builder methods.asyncfnmaterialize<T>(&self,prompt:&str) -> Result<T>whereT:Instructor + DeserializeOwned + Send + 'static;/// Generate raw text without structureasyncfngenerate(&self,prompt:&str) -> Result<String>;}
Note: For production applications, configure the client with .max_retries() and .include_error_feedback() and call materialize().
description: Text description of the field
example: A single example value
examples: Multiple example values
description: Text description of the struct or enum
title: Custom title for the JSON Schema
examples: Example instances as JSON objects
Configure rstructor with feature flags:
[dependencies]
rstructor = { version = "0.1.0", features = ["openai", "anthropic", "grok", "gemini"] }
Available features:
openai: Include the OpenAI client
anthropic: Include the Anthropic client
grok: Include the Grok (xAI) client
gemini: Include the Gemini (Google) client
derive: Include the derive macro (enabled by default)
logging: Enable tracing integration with default subscriber
rstructor includes structured logging via the tracing crate:
use rstructor::logging::{init_logging,LogLevel};// Initialize with desired levelinit_logging(LogLevel::Debug);// Or use filter strings for granular control// init_logging_with_filter("rstructor=info,rstructor::backend=trace");
Override with environment variables:
RSTRUCTOR_LOG=debug cargo run
Validation errors, retries, and API interactions are thoroughly logged at appropriate levels.
See the examples/ directory for complete, working examples:
structured_movie_info.rs: Basic example of getting movie information with validation
nested_objects_example.rs: Working with complex nested structures for recipe data
news_article_categorizer.rs: Using enums for categorization
enum_with_data_example.rs: Working with enums that have associated data (tagged unions)
event_planner.rs: Interactive event planning with user input
weather_example.rs: Simple model with validation demonstration
validation_example.rs: Demonstrates custom validation without dead code warnings
custom_type_example.rs: Using custom types like dates and UUIDs with JSON Schema format support
logging_example.rs: Demonstrates tracing integration with custom log levels
nested_enum_example.rs: Shows automatic schema generation for nested enums inside structs
# Set environment variablesexport OPENAI_API_KEY=your_openai_key_here
# orexport ANTHROPIC_API_KEY=your_anthropic_key_here
# orexport XAI_API_KEY=your_xai_key_here
# orexport GEMINI_API_KEY=your_gemini_key_here
# Run examples
cargo run --example structured_movie_info
cargo run --example news_article_categorizer
rstructor currently focuses on single-turn, synchronous structured output generation. The following features are planned but not yet implemented:
Streaming Responses: Real-time streaming of partial results as they're generated
Conversation History: Multi-turn conversations with message history (currently only single prompts supported)
System Messages: Explicit system prompts for role-based interactions
Response Modes: Different validation strategies (strict, partial, etc.)
Rate Limiting: Built-in rate limit handling and backoff strategies
Core traits and interfaces
OpenAI backend implementation
Anthropic backend implementation
Procedural macro for deriving Instructor
Schema generation functionality
Custom validation capabilities
Support for nested structures
Rich validation API with custom domain rules
Support for enums with associated data (tagged unions)
Support for custom types (dates, UUIDs, etc.)
Structured logging and tracing
Automatic retry with validation error feedback
Streaming responses
Conversation history / multi-turn support
System messages and role-based prompts
Response modes (strict, partial, retry)
Rate limiting and backoff strategies
Support for additional LLM providers
Integration with web frameworks (Axum, Actix)
This project is licensed under the MIT License - see the LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.