Run your PyTorch code anywhere and power it with cloud GPUs. Mycelya integrates a remote GPU backend into PyTorch, allowing tensor operations to execute on cloud infrastructure with minimal code changes.
import torch
import mycelya_torch
# Create a remote machine with cloud GPU
machine = mycelya_torch.RemoteMachine("modal", "A100")
cuda_device = machine.device("cuda")
# Your existing PyTorch code just works
x = torch.randn(1000, 1000, device=cuda_device)
y = torch.randn(1000, 1000).to(cuda_device) # Move tensor to remote GPU
result = x @ y # Computed on remote A100!
# Transfer result back to local machine
result_local = result.cpu()
print(f"Result: {result_local}")
8 GPU Types: T4, L4, A10G, A100, L40S, H100, H200, B200
- Python 3.10+
- PyTorch 2.0+
- Modal account (free tier available)
Note: Modal is currently the only supported GPU cloud provider. Support for other providers (AWS, etc.) will be added in future releases.
pip install mycelya-torch
Or install from source:
pip install git+https://github.com/alyxya/mycelya-torch.git
import torch
import torch.nn as nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import mycelya_torch
# Setup remote GPU
machine = mycelya_torch.RemoteMachine("modal", "T4")
device = machine.device("cuda")
# Load MNIST data
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_data = datasets.MNIST("./data", train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=128, shuffle=True)
# Define model - all operations run on remote GPU
model = nn.Sequential(
nn.Flatten(),
nn.Linear(784, 128),
nn.ReLU(),
nn.Linear(128, 10)
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Train on remote GPU
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.cross_entropy(output, target)
loss.backward()
optimizer.step()
import mycelya_torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Define remote functions for model loading and inference
@mycelya_torch.remote
def load_model(model_name: str):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
return model, tokenizer
@mycelya_torch.remote
def generate_text(model, tokenizer, prompt: str):
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
return tokenizer.decode(output_ids, skip_special_tokens=True)
# Create remote machine with required packages
machine = mycelya_torch.RemoteMachine(
"modal", "A100", pip_packages=["transformers", "accelerate"]
)
# Load model and generate text - all on remote GPU
model, tokenizer = load_model("Qwen/Qwen3-4B-Instruct-2507")
content = generate_text(model, tokenizer, "Explain quantum computing briefly.")
print("Response:", content)
import torch
import mycelya_torch
from diffusers import DiffusionPipeline
# Define remote functions for pipeline loading and image generation
@mycelya_torch.remote
def load_pipeline(model_name: str):
pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16).to("cuda")
return pipe
@mycelya_torch.remote
def generate_image(pipe, prompt: str, height: int, width: int, seed: int):
image = pipe(
prompt,
height=height,
width=width,
num_inference_steps=50,
true_cfg_scale=4.0,
generator=torch.Generator(device="cuda").manual_seed(seed)
).images[0]
return image
# Create remote machine with required packages
machine = mycelya_torch.RemoteMachine(
"modal", "H100", pip_packages=["diffusers", "transformers", "accelerate"]
)
# Load pipeline and generate image - all on remote GPU
pipe = load_pipeline("Qwen/Qwen-Image")
image = generate_image(pipe, "A cat holding a sign that says hello world",
height=1024, width=1024, seed=0)
image.save("cat.png")
# Create remote machine with cloud GPU
machine = mycelya_torch.RemoteMachine(
"modal", "A100",
gpu_count=1, # 1-8 GPUs
pip_packages=["transformers", "diffusers"], # Pre-install for remote functions
idle_timeout=300 # Pause after 5 min inactivity
)
device = machine.device("cuda")
# Install packages dynamically
machine.pip_install("numpy")
# Pause to save costs, resume when needed
machine.pause() # Offload state and stop compute
machine.resume() # Restart and reload state
# Execute entire function remotely
@mycelya_torch.remote
def custom_function(x: torch.Tensor) -> torch.Tensor:
return torch.relu(x @ x.T)
result = custom_function(x) # Runs on remote GPU
# Async execution
@mycelya_torch.remote(run_async=True)
def async_function(x: torch.Tensor) -> torch.Tensor:
return x @ x.T
future = async_function(x)
result = future.result()
AGPL-3.0-or-later - See LICENSE file for details.
.png)

