Show HN: Token-efficient zod-like schema definition library for LLMs

3 months ago 5

CI npm version npm downloads License TypeScript

Token-efficient schema definition for getting structured output from LLMs.

  • Compact schema definition: StructLM uses a proprietary object notation that is more compact and is more token-efficient than JSON schemas.

  • Clear and readable: StructLM's schema definition is human-readable, and is more similar to natural TypeScript syntax. See SPECIFICATION.md for the full specification.

  • More expressive validation: Validations are defined as functions, and are serialized to be sent to LLMs.

  • No accuracy loss: Despite being more compact, StructLM does not lose any accuracy when generating structured output, when compared to JSON schemas. See BENCHMARKS.md for more details on our benchmarks.

  • Lightweight: Zero dependencies, focused solely on runtime schema definition, and output validation.

  • Type-safety: StructLM provides full zod-like TypeScript type inference at compile time, and assertions at run time.

This is a benchmark of StructLM vs JSON Schema, using Claude 3.5 Haiku. For the full benchmark, see BENCHMARKS.md.

StructLM vs JSON Schema

  • JSON-Schema: 414 tokens (average)
  • StructLM: 222 tokens (average)
  • Reduction: 46.4% (average)
  • Accuracy: Equal
  • JSON-Schema: 1460 tokens (average)
  • StructLM: 610 tokens (average)
  • Reduction: 58.2% (average)
  • Accuracy: StructLM is slightly better (+0.4% on average)

Schema with custom validations

  • JSON-Schema: 852 tokens (average)
  • StructLM: 480 tokens (average)
  • Reduction: 43.7% (average)
  • Accuracy: Equal
import { s } from 'structlm'; // Define a user schema const userSchema = s.object({ name: s.object({ first: s.string(), last: s.string() }), age: s.number(), active: s.boolean(), tags: s.array(s.string()) }); // Generate schema description for LLM console.log(userSchema.stringify()); // Output: "{ name: { first: string, last: string }, age: number, active: boolean, tags: [string] }" // Parse and validate JSON data const userData = userSchema.parse('{"name":{"first":"John","last":"Doe"},"age":30,"active":true,"tags":["developer","typescript"]}'); // Returns: { name: { first: "John", last: "Doe" }, age: 30, active: true, tags: ["developer", "typescript"] }

Here's a complete example showing how to use StructLM with an LLM to extract structured data:

import { s } from 'structlm'; // 1. Define your schema const contactSchema = s.object({ name: s.string(), email: s.string().validate(email => email.includes('@')), phone: s.string().optional(), company: s.string() }); // 2. Create your prompt with the schema const text = "Contact John Doe at [email protected] or call (555) 123-4567. He works at Tech Corp."; const prompt = ` Extract contact information from the following text and return it as JSON matching this structure: ${contactSchema.stringify()} Text: "${text}" Return only the JSON object, no additional text.`; // The schema.stringify() outputs: // { name: string, email: string /* email=>email.includes('@') */, phone: string /* optional */, company: string } // 3. Send prompt to LLM (the LLM returns this JSON string) const llmResponse = `{ "name": "John Doe", "email": "[email protected]", "phone": "(555) 123-4567", "company": "Tech Corp" }`; // 4. Parse and validate the LLM response const contact = contactSchema.parse(llmResponse); // Returns: { name: "John Doe", email: "john@example.com", phone: "(555) 123-4567", company: "Tech Corp" } // The parse() method validates the email format and ensures all required fields are present

For the specification of the custom object notation, see SPECIFICATION.md.

Creates a string schema.

const nameSchema = s.string(); console.log(nameSchema.stringify()); // "string" // Parse and validate a string const name = nameSchema.parse('"John"'); // "John"

Creates a number schema.

const ageSchema = s.number(); console.log(ageSchema.stringify()); // "number" // Parse and validate a number const age = ageSchema.parse('25'); // 25

Creates a boolean schema.

const activeSchema = s.boolean(); console.log(activeSchema.stringify()); // "boolean" // Parse and validate a boolean const isActive = activeSchema.parse('true'); // true

Creates an array schema with specified item type.

const numbersSchema = s.array(s.number()); console.log(numbersSchema.stringify()); // "[number]" // Parse and validate an array const numbers = numbersSchema.parse('[1, 2, 3, 4]'); // [1, 2, 3, 4] const usersSchema = s.array(s.object({ name: s.string(), age: s.number() })); console.log(usersSchema.stringify()); // "[ { name: string, age: number } ]" // Parse complex array const users = usersSchema.parse('[{"name":"John","age":30},{"name":"Jane","age":25}]'); // Returns: [{ name: "John", age: 30 }, { name: "Jane", age: 25 }]

Creates an object schema with specified properties.

const personSchema = s.object({ name: s.string(), age: s.number(), address: s.object({ street: s.string(), city: s.string(), zipCode: s.string() }) }); console.log(personSchema.stringify()); // "{ name: string, age: number, address: { street: string, city: string, zipCode: string } }" // Parse and validate an object const person = personSchema.parse(`{ "name": "John Doe", "age": 30, "address": { "street": "123 Main St", "city": "Anytown", "zipCode": "12345" } }`); // Returns typed object with validation

Adds custom validation using a JavaScript function.

** IMPORTANT **: Validation functions need to be pure functions, and not reference any external variables.

const emailSchema = s.string().validate(email => email.includes('@')); const positiveNumberSchema = s.number().validate(n => n > 0); const adultAgeSchema = s.number().validate(age => age >= 18); // Chaining validation with schema definition const userSchema = s.object({ email: s.string().validate(email => email.includes('@')), age: s.number().validate(age => age >= 0), username: s.string().validate(name => name.length >= 3) });

Makes a field optional in object schemas.

const userSchema = s.object({ name: s.string(), age: s.number().optional(), bio: s.string().validate(bio => bio.length <= 500).optional(), tags: s.array(s.string()).optional() }); console.log(userSchema.stringify()); // Output: "{ name: string, age: number /* optional */, bio: string /* bio=>bio.length<=500, optional */, tags: [string] /* optional */ }" // All these are valid: userSchema.parse('{"name":"John"}'); userSchema.parse('{"name":"John","age":30}'); userSchema.parse('{"name":"John","age":30,"bio":"Developer","tags":["js","ts"]}');

StructLM provides full TypeScript type inference:

import { s, Infer } from 'structlm'; const userSchema = s.object({ name: s.string(), age: s.number(), active: s.boolean() }); type User = Infer<typeof userSchema>; // User = { name: string; age: number; active: boolean; }
const apiResponseSchema = s.object({ status: s.string().validate(s => ['success', 'error'].includes(s)), data: s.object({ users: s.array(s.object({ id: s.number(), profile: s.object({ name: s.object({ first: s.string(), last: s.string() }), contact: s.object({ email: s.string().validate(email => email.includes('@')), phone: s.string() }) }), permissions: s.array(s.string()), metadata: s.object({ createdAt: s.string(), lastLogin: s.string(), loginCount: s.number().validate(n => n >= 0) }) })) }), pagination: s.object({ page: s.number().validate(n => n > 0), limit: s.number().validate(n => n > 0), total: s.number().validate(n => n >= 0) }) }); console.log(apiResponseSchema.stringify()); // Outputs clean, readable schema description
// Email validation const emailSchema = s.string().validate(email => { const emailRegex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/; return emailRegex.test(email); }); // Age validation const ageSchema = s.number().validate(age => age >= 0 && age <= 120); // Username validation const usernameSchema = s.string().validate(username => { return username.length >= 3 && username.length <= 20 && /^[a-zA-Z0-9_]+$/.test(username); }); // Complex object with multiple validations const registrationSchema = s.object({ username: usernameSchema, email: emailSchema, age: ageSchema, password: s.string().validate(pwd => pwd.length >= 8), confirmPassword: s.string(), acceptTerms: s.boolean().validate(accepted => accepted === true) });

StructLM provides a more compact alternative to JSON Schema for LLM applications. Here's how they compare:

JSON Schema:

{ "type": "object", "properties": { "name": { "type": "string", "minLength": 2 }, "email": { "type": "string", "format": "email" }, "age": { "type": "number", "minimum": 18, "maximum": 120 }, "roles": { "type": "array", "items": { "type": "string" }, "minItems": 1 } }, "required": ["name", "email", "age", "roles"] }

StructLM Schema:

{ name: string /* name=>name.length>=2 */, email: string /* email=>email.includes("@") */, age: number /* age=>age>=18&&age<=120 */, roles: [string] /* arr=>arr.length>=1 */ }

To get this schema, this is the expression you would use:

const userSchema = s.object({ name: s.string().validate(name => name.length >= 2), email: s.string().validate(email => email.includes('@')), age: s.number().validate(age => age >= 18 && age <= 120), roles: s.array(s.string()).validate(arr => arr.length >= 1) });

Frequently Asked Questions

Q: How is StructLM different from Zod?

A: While StructLM is inspired by Zod's API, it's specifically designed for LLM integration. StructLM generates compact schema descriptions optimized for AI prompts (XX% fewer tokens), while Zod focuses on general TypeScript validation. StructLM's .stringify() method produces LLM-friendly output, whereas Zod employs zod-to-json-schema or equivalent tools.

Q: Can I use StructLM for regular data validation without LLMs?

A: Yes! StructLM mostly works for standard TypeScript data validation. Use .parse() for validation and type inference just like Zod. However, StructLM's main advantage is its token-efficient LLM integration capabilities. Therefore, some of the more advanced Typescript features like discriminated unions, recursive types, etc. may not work as expected right now.

Q: Which LLMs work with StructLM?

StructLM itself is model agnostic, and works as a schema definition and data validation library. Reliability may vary by model, but our benchmarks show consistent results across major providers.

Q: Does StructLM work in the browser?

A: Yes! StructLM is a lightweight TypeScript library with zero dependencies that works in browsers, Node.js, Deno, and Bun.

Q: How do I make a field optional?

A: Use the .optional() method on any field:

const schema = s.object({ name: s.string(), age: s.number().optional(), email: s.string().validate(e => e.includes('@')).optional() }); // Outputs: { name: string, age: number /* optional */, email: string /* e=>e.includes("@"), optional */ }

Optional fields are excluded from validation when missing from the input data.

Q: Can I use unions/discriminated unions like in Zod?

A: Union types are not currently supported but are on the roadmap. For now, use string validation with enums:

const statusSchema = s.string().validate(status => ['pending', 'approved', 'rejected'].includes(status) );

Q: How do I validate nested arrays?

A: Use nested s.array() calls:

const matrixSchema = s.array(s.array(s.number())); // Outputs: [[number]] const complexSchema = s.array( s.object({ items: s.array(s.string()).validate(arr => arr.length > 0) }) );

Q: Can validation functions access other fields in the object?

A: No, validation functions only receive the current field's value. Cross-field validation isn't currently supported.

Q: Do LLMs really understand StructLM's compact format better?

A: Our benchmarks show equal or better accuracy compared to JSON Schema. The compact format is:

  • Less verbose and confusing
  • More similar to natural TypeScript syntax
  • Includes validation hints inline
  • Reduces prompt complexity

Q: Can I combine multiple schemas in one prompt?

A: Yes! Use .stringify() on multiple schemas:

const userSchema = s.object({...}); const orderSchema = s.object({...}); const prompt = ` Process this data and return: - User: ${userSchema.stringify()} - Order: ${orderSchema.stringify()} `;

Q: How do I handle LLM responses that don't match the schema?

A: StructLM's .parse() method throws descriptive errors for invalid data:

try { const result = schema.parse(llmResponse); } catch (error) { console.log('LLM returned invalid data:', error.message); // Handle error: retry, use fallback, etc. }

Q: What's the performance overhead?

A: StructLM is lightweight:

  • Schema creation: Minimal overhead
  • .stringify(): Fast string concatenation
  • .parse(): JSON.parse + validation functions
  • No runtime dependencies

Q: Can I pre-compile schemas for better performance?

A: Schema stringification is already very fast, but you can cache results:

const userSchemaString = userSchema.stringify(); // Reuse userSchemaString in multiple prompts

Q: Why is my validation function not working in LLM prompts?

A: Validation functions are serialized as text hints for LLMs but only enforced during .parse(). Make sure your function:

  • Uses simple, clear logic
  • Doesn't reference external variables
  • Is readable when converted to string

Q: Can I see what the validation hints look like?

A: Yes! Use .stringify() to see exactly what gets sent to the LLM:

console.log(schema.stringify()); // Shows the compact format with validation hints

We welcome contributions! Please open an issue or submit a pull request on GitHub.

Apache 2.0 License

Read Entire Article