CodeBoarding is an open-source codebase analysis tool that generates high-level diagram representations of codebases using static analysis and LLM agents, that humans and agents can interact with.
It’s designed to support onboarding, documentation, and comprehension for large, complex systems.
Extract modules and their relationships based on the control flow graph of the project.
Builds different levels of abstraction with an LLM agent (multi-provider support)
Outputs interactive diagrams (Mermaid.js) for integration into docs, IDEs, CI/CD.
📄 Existing visual generations: GeneratedOnBoardings
🌐 Try for your open-source project: www.codeboarding.org/demo
For detailed architecture information, see our diagram documentation .
graph LR
Orchestration_Workflow["Orchestration & Workflow"]
Static_Code_Analyzer["Static Code Analyzer"]
AI_Analysis_Engine["AI Analysis Engine"]
Analysis_Persistence["Analysis Persistence"]
Output_Generator["Output Generator"]
Orchestration_Workflow -- "invokes analysis on" --> Static_Code_Analyzer
Static_Code_Analyzer -- "returns raw graph data to" --> Orchestration_Workflow
Orchestration_Workflow -- "consults and saves analysis to" --> Analysis_Persistence
Analysis_Persistence -- "provides cached analysis to" --> Orchestration_Workflow
Orchestration_Workflow -- "invokes with graph data" --> AI_Analysis_Engine
AI_Analysis_Engine -- "returns high-level model to" --> Orchestration_Workflow
Orchestration_Workflow -- "sends model for rendering to" --> Output_Generator
click Orchestration_Workflow href "https://github.com/CodeBoarding/CodeBoarding/tree/main/.codeboarding/Orchestration_Workflow.md" "Details"
click Static_Code_Analyzer href "https://github.com/CodeBoarding/CodeBoarding/tree/main/.codeboarding/Static_Code_Analyzer.md" "Details"
click AI_Analysis_Engine href "https://github.com/CodeBoarding/CodeBoarding/tree/main/.codeboarding/AI_Analysis_Engine.md" "Details"
Loading
Setup the environment:
uv venv --python 3.11
uv pip sync
# LLM Provider (choose one)
OPENAI_API_KEY=
ANTHROPIC_API_KEY=
GOOGLE_API_KEY=
AWS_BEARER_TOKEN_BEDROCK=
# Core Configuration
CACHING_DOCUMENTATION=false # Enable/disable documentation caching
REPO_ROOT=./repos # Directory for downloaded repositories
ROOT_RESULT=./results # Directory for generated outputs
PROJECT_ROOT=/path/to/CodeBoarding # Source project root (must end with /CodeBoarding)
DIAGRAM_DEPTH_LEVEL=1 # Max depth level for diagram generation
# Optional
GITHUB_TOKEN= # For accessing private repositories
LANGSMITH_TRACING=false # Optional: Enable LangSmith tracing
LANGSMITH_ENDPOINT= # Optional: LangSmith endpoint
LANGSMITH_PROJECT= # Optional: LangSmith project name
LANGCHAIN_API_KEY= # Optional: LangChain API key
💡 Tip: Our experience has shown that using Google Gemini‑2.5‑Pro yields the best results for complex diagram generation tasks.
python demo.py < github_repo_url> --output-dir < output_path>
We have visualized over 300+ popular open-source projects . See examples:
graph LR
ChatTTS_Core_Orchestrator["ChatTTS Core Orchestrator"]
Text_Processing_Module["Text Processing Module"]
Speech_Synthesis_Models["Speech Synthesis Models"]
Velocity_Inference_Engine["Velocity Inference Engine"]
System_Utilities_Configuration["System Utilities & Configuration"]
ChatTTS_Core_Orchestrator -- "Orchestrates Text Flow" --> Text_Processing_Module
ChatTTS_Core_Orchestrator -- "Receives Processed Text" --> Text_Processing_Module
ChatTTS_Core_Orchestrator -- "Orchestrates Synthesis Flow" --> Speech_Synthesis_Models
ChatTTS_Core_Orchestrator -- "Receives Audio Output" --> Speech_Synthesis_Models
ChatTTS_Core_Orchestrator -- "Initializes & Configures" --> System_Utilities_Configuration
ChatTTS_Core_Orchestrator -- "Loads Assets" --> System_Utilities_Configuration
Text_Processing_Module -- "Receives Raw Text" --> ChatTTS_Core_Orchestrator
Text_Processing_Module -- "Provides Processed Text" --> ChatTTS_Core_Orchestrator
Speech_Synthesis_Models -- "Receives Processed Data" --> ChatTTS_Core_Orchestrator
Speech_Synthesis_Models -- "Generates Audio Output" --> ChatTTS_Core_Orchestrator
Speech_Synthesis_Models -- "Delegates Inference To" --> Velocity_Inference_Engine
Speech_Synthesis_Models -- "Receives Inference Results" --> Velocity_Inference_Engine
Speech_Synthesis_Models -- "Utilizes GPU Resources" --> System_Utilities_Configuration
Speech_Synthesis_Models -- "Accesses Model Config" --> System_Utilities_Configuration
Velocity_Inference_Engine -- "Executes Model Inference" --> Speech_Synthesis_Models
Velocity_Inference_Engine -- "Returns Inference Output" --> Speech_Synthesis_Models
Velocity_Inference_Engine -- "Receives Engine Configuration" --> System_Utilities_Configuration
System_Utilities_Configuration -- "Provides Assets & Config" --> ChatTTS_Core_Orchestrator
System_Utilities_Configuration -- "Provides GPU & Config" --> Speech_Synthesis_Models
System_Utilities_Configuration -- "Provides Engine Config" --> Velocity_Inference_Engine
click ChatTTS_Core_Orchestrator href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main//ChatTTS/ChatTTS_Core_Orchestrator.md" "Details"
click Text_Processing_Module href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main//ChatTTS/Text_Processing_Module.md" "Details"
click Speech_Synthesis_Models href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main//ChatTTS/Speech_Synthesis_Models.md" "Details"
click Velocity_Inference_Engine href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main//ChatTTS/Velocity_Inference_Engine.md" "Details"
click System_Utilities_Configuration href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main//ChatTTS/System_Utilities_Configuration.md" "Details"
Loading
graph LR
Core_Tensor_Operations["Core Tensor Operations"]
Neural_Network_Construction["Neural Network Construction"]
Automatic_Differentiation_Engine["Automatic Differentiation Engine"]
Optimization_Algorithms["Optimization Algorithms"]
Performance_Optimization["Performance Optimization"]
Distributed_Training_Infrastructure["Distributed Training Infrastructure"]
Model_Deployment_Optimization["Model Deployment & Optimization"]
Meta_Programming_Code_Generation["Meta-Programming & Code Generation"]
Functional_Programming_Transforms["Functional Programming Transforms"]
Neural_Network_Construction -- "relies on" --> Core_Tensor_Operations
Automatic_Differentiation_Engine -- "uses" --> Core_Tensor_Operations
Automatic_Differentiation_Engine -- "uses" --> Neural_Network_Construction
Optimization_Algorithms -- "optimizes" --> Neural_Network_Construction
Optimization_Algorithms -- "uses" --> Automatic_Differentiation_Engine
Performance_Optimization -- "optimizes" --> Core_Tensor_Operations
Performance_Optimization -- "optimizes" --> Neural_Network_Construction
Distributed_Training_Infrastructure -- "uses" --> Core_Tensor_Operations
Distributed_Training_Infrastructure -- "uses" --> Automatic_Differentiation_Engine
Distributed_Training_Infrastructure -- "uses" --> Neural_Network_Construction
Model_Deployment_Optimization -- "optimizes" --> Neural_Network_Construction
Model_Deployment_Optimization -- "optimizes" --> Core_Tensor_Operations
Meta_Programming_Code_Generation -- "generates code for" --> Core_Tensor_Operations
Meta_Programming_Code_Generation -- "generates code for" --> Neural_Network_Construction
Functional_Programming_Transforms -- "uses" --> Core_Tensor_Operations
Functional_Programming_Transforms -- "uses" --> Automatic_Differentiation_Engine
click Core_Tensor_Operations href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Core Tensor Operations.md" "Details"
click Neural_Network_Construction href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Neural Network Construction.md" "Details"
click Automatic_Differentiation_Engine href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Automatic Differentiation Engine.md" "Details"
click Optimization_Algorithms href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Optimization Algorithms.md" "Details"
click Performance_Optimization href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Performance Optimization.md" "Details"
click Distributed_Training_Infrastructure href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Distributed Training Infrastructure.md" "Details"
click Model_Deployment_Optimization href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Model Deployment & Optimization.md" "Details"
click Meta_Programming_Code_Generation href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Meta-Programming & Code Generation.md" "Details"
click Functional_Programming_Transforms href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/pytorch/Functional Programming Transforms.md" "Details"
Loading
graph LR
Application_Core["Application Core"]
Middleware["Middleware"]
Routing["Routing"]
Request_Handling_Validation["Request Handling & Validation"]
Dependency_Injection["Dependency Injection"]
Security["Security"]
Response_Handling["Response Handling"]
API_Documentation["API Documentation"]
Application_Core -- "sends request to" --> Middleware
Middleware -- "forwards request to" --> Routing
Routing -- "uses" --> Request_Handling_Validation
Routing -- "uses" --> Dependency_Injection
Routing -- "provides data for" --> Response_Handling
Dependency_Injection -- "enables" --> Security
Response_Handling -- "sends response to" --> Middleware
API_Documentation -- "inspects" --> Routing
API_Documentation -- "inspects" --> Request_Handling_Validation
click Application_Core href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/fastapi/Application_Core.md" "Details"
click Middleware href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/fastapi/Middleware.md" "Details"
click Routing href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/fastapi/Routing.md" "Details"
click Request_Handling_Validation href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/fastapi/Request_Handling_Validation.md" "Details"
click Dependency_Injection href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/fastapi/Dependency_Injection.md" "Details"
click Security href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/fastapi/Security.md" "Details"
click API_Documentation href "https://github.com/CodeBoarding/GeneratedOnBoardings/blob/main/fastapi/API_Documentation.md" "Details"
Loading
Browse more examples: GeneratedOnBoardings Repository
Codeboarding is integrated with everything we use:
📦 VS Code Extension : Interact with the diagram direclty in your IDE.
⚙️ GitHub Action : Automate diagram generation in CI/CD.
🔗 MCP Server : Serves the consize documentation to your AI Agent assistant (ClaudeCode, VSCode, Cursor, etc.)
Unified high-level representation for codebases that is accurate (hence static analysis). This representation is used by both people and agents → fully integrated in IDEs, MCP servers, and development workflows.