Single-material electronic skin gives robots the human touch

4 days ago 1

Electronic skins work by converting physical information – like pressure or temperature – into electronic signals. In most cases, different types of sensors are needed for different types of touch – one type of sensor to detect pressure, another for temperature, and so on – which are then embedded into soft, flexible materials. However, the signals from these different sensors can interfere with each other, and the materials are easily damaged.

“Having different sensors for different types of touch leads to materials that are complex to make,” said lead author Dr David Hardman from Cambridge’s Department of Engineering. “We wanted to develop a solution that can detect multiple types of touch at once, but in a single material.”

“At the same time, we need something that’s cheap and durable, so that it’s suitable for widespread use,” said co-author Dr Thomas George Thuruthel from UCL.

Their solution uses one type of sensor that reacts differently to different types of touch, known as multi-modal sensing. While it’s challenging to separate out the cause of each signal, multi-modal sensing materials are easier to make and more robust.

The researchers melted down a soft, stretchy and electrically conductive gelatine-based hydrogel, and cast it into the shape of a human hand. They tested a range of different electrode configurations to determine which gave them the most useful information about different types of touch. From just 32 electrodes placed at the wrist, they were able to collect over 1.7 million pieces of information over the whole hand, thanks to the tiny pathways in the conductive material.

The skin was then tested on different types of touch: the researchers blasted it with a heat gun, pressed it with their fingers and a robotic arm, gently touched it with their fingers, and even cut it open with a scalpel. The team then used the data gathered during these tests to train a machine learning model so the hand would recognise what the different types of touch meant. 

“We’re able to squeeze a lot of information from these materials – they can take thousands of measurements very quickly,” said Hardman, who is a postdoctoral researcher in the lab of co-author Professor Fumiya Iida. “They’re measuring lots of different things at once, over a large surface area.”

“We’re not quite at the level where the robotic skin is as good as human skin, but we think it’s better than anything else out there at the moment,” said Thuruthel. “Our method is flexible and easier to build than traditional sensors, and we’re able to calibrate it using human touch for a range of tasks.”

In future, the researchers are hoping to improve the durability of the electronic skin, and to carry out further tests on real-world robotic tasks.

The research was supported by Samsung Global Research Outreach Program, the Royal Society, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI). Fumiya Iida is a Fellow of Corpus Christi College, Cambridge.

Reference:
David Hardman, Thomas George Thuruthel, Fumiya Iida. ‘
Multimodal information structuring using single layer soft sensory skins and high-density electrical impedance tomography.’ Science Robotics (2025). DOI: 10.1126/scirobotics.adq2303

Read Entire Article