Spontaneous immortalization of bovine fibroblasts for cultivated beef

2 hours ago 1
  • Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961).

    CAS  PubMed  Google Scholar 

  • Hayflick, L. Cell biology of aging. BioScience 25, 629–637 (1975).

    Google Scholar 

  • Hayflick, L. Current theories of biological aging. Fed. Proc. 34, 9–13 (1975).

    CAS  PubMed  Google Scholar 

  • Jin, P. et al. Oxidative stress and cellular senescence: roles in tumor progression and therapeutic opportunities. MedComm Oncol. 3, e70007 (2024).

    CAS  Google Scholar 

  • Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    CAS  PubMed  Google Scholar 

  • Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    PubMed  PubMed Central  Google Scholar 

  • Tauchi, H., Matsuura, S., Kobayashi, J., Sakamoto, S. & Komatsu, K. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 21, 8967–8980 (2002).

    CAS  PubMed  Google Scholar 

  • Hakem, R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 27, 589–605 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman, A. L. & Tainsky, M. A. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 27, 5975–5987 (2008).

    CAS  PubMed  Google Scholar 

  • Oh, H. Y. et al. Characteristics of primary and immortalized fibroblast cells derived from the miniature and domestic pigs. BMC Cell Biol. 8, 20 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Harvey, D. M. & Levine, A. J. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev. 5, 2375–2385 (1991).

    CAS  PubMed  Google Scholar 

  • Peto, R., Roe, F. J. C., Lee, P. N., Levy, L. & Clack, J. Cancer and ageing in mice and men. Br. J. Cancer 32, 411–426 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincze, O. et al. Cancer risk across mammals. Nature 601, 263–267 (2022).

    ADS  CAS  PubMed  Google Scholar 

  • Preston, A. J. et al. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov. 9, 66 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. elife 5, e11994 (2016).

  • Perillo, M., Punzo, A., Caliceti, C., Sell, C. & Lorenzini, A. The spontaneous immortalization probability of mammalian cell culture strains, as their proliferative capacity, correlates with species body mass, not longevity. Biomed J. 46, 100596 (2023).

    PubMed  PubMed Central  Google Scholar 

  • Pasitka, L. et al. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food 4, 35–50 (2023).

    CAS  PubMed  Google Scholar 

  • Zhao, R. et al. The establishment of clonally derived chicken embryonic fibroblast cell line (CSC) with high transfection efficiency and ability as a feeder cell. J. Cell. Biochem. 119, 8841–8850 (2018).

    CAS  PubMed  Google Scholar 

  • Jin, X. et al. Myogenic differentiation of p53- and Rb-deficient immortalized and transformed bovine fibroblasts in response to MyoD. Mol. Cells 21, 206–212 (2005).

  • Shabtay, A. et al. The meat quality characteristics of Holstein calves: the story of Israeli ‘dairy beef’. Foods 10, 2308 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conanec, A. et al. Has breed any effect on beef sensory quality?. Livestock Sci. 250, 104548 (2021).

    Google Scholar 

  • Blackburn, E. H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    ADS  CAS  PubMed  Google Scholar 

  • Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    ADS  CAS  PubMed  Google Scholar 

  • Betts, D. H. et al. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl Acad. Sci. USA 98, 1077–1082 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesare, A. J. & Reddel, R. R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11, 319–330 (2010).

    CAS  PubMed  Google Scholar 

  • Nacarelli, T. et al. NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnay, F. et al. Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis. Cell 182, 1490–1507 e1419 (2020).

    CAS  PubMed  Google Scholar 

  • Di Felice, V. et al. Senescence-associated HSP60 expression in normal human skin fibroblasts. Anat. Rec. A 284, 446–453 (2005).

  • Ventura-Clapier, R., Garnier, A. & Veksler, V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc. Res. 79, 208–217 (2008).

    CAS  PubMed  Google Scholar 

  • Pasitka, L. et al. Empirical economic analysis shows cost-effective continuous manufacturing of cultivated chicken using animal-free medium. Nat. Food 5, 693–702 (2024).

    PubMed  Google Scholar 

  • Stout, A. J. et al. Immortalized bovine satellite cells for cultured meat applications. ACS Synth. Biol. 12, 1567–1573 (2023).

    CAS  PubMed  Google Scholar 

  • Humbird, D. Scale-Up economics for cultured meat: techno-economic analysis and due diligence. Biotechnol. Bioengin. 118, 3239–3250 (2021).

  • Pohlscheidt, M. et al. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium. Vaccine 26, 1552–1565 (2008).

    CAS  PubMed  Google Scholar 

  • Thomassen, Y. E., Rubingh, O., Wijffels, R. H., van der Pol, L. A. & Bakker, W. A. M. Improved poliovirus d-antigen yields by application of different Vero cell cultivation methods. Vaccine 32, 2782–2788 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    CAS  PubMed  Google Scholar 

  • Zhao, C. et al. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells. BMC Cell Biol. 11, 82 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Vizioli, M. G. et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vernier, M. & Giguère, V. Aging, senescence and mitochondria: the PGC-1/ERR axis. J. Mol. Endocrinol. 66, R1–r14 (2021).

    CAS  PubMed  Google Scholar 

  • Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–r185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olmos, Y. et al. Mutual dependence of Foxo3a and PGC-1α in the induction of oxidative stress genes. J. Biol. Chem. 284, 14476–14484 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeBleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, L. et al. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct. Target. Ther. 9, 50 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negulescu, P. G. et al. Techno-economic modeling and assessment of cultivated meat: impact of production bioreactor scale. Biotechnol. Bioeng. 120, 1055–1067 (2023).

  • Zhao, Z. et al. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer Prostatic Dis. 24, 233–243 (2021).

    CAS  PubMed  Google Scholar 

  • Lin, Y. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473–7485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Post, M. J. et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1, 403–415 (2020).

    Google Scholar 

  • Tuomisto, H. L. & Teixeira de Mattos, M. J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • Sinke, P., Swartz, E., Sanctorum, H., van der Giesen, C. & Odegard, I. Ex-ante life cycle assessment of commercial-scale cultivated meat production in 2030. Int. J. Life Cycle Assess. 28, 234–254 (2023).

    Google Scholar 

  • Humbird, D. Scale-up economics for cultured meat. Biotechnol. Bioeng. 118, 3239–3250 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens, N. et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78, 155–166 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant, C. & Barnett, J. Consumer acceptance of cultured meat: a systematic review. Meat Sci. 143, 8–17 (2018).

  • Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, H. et al. nf-core/rnaseq: nf-core/rnaseq v.3.14.0—Hassium Honey Badger. Zenodo https://zenodo.org/records/10471647 (2024).

  • Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    PubMed  Google Scholar 

  • Shamimuzzaman, M. et al. Bovine Genome Database: new annotation tools for a new reference genome. Nucleic Acids Res. 48, D676–D681 (2020).

    CAS  PubMed  Google Scholar 

  • Raz, R., Roth, Z. & Gershoni, M. ExAgBov: a public database of annotated variations from hundreds of bovine whole-exome sequencing samples. Sci Data 9, 469 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, M. et al. Sarek: a portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Res 9, 63 (2020).

  • Hanssen, F. et al. Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery. NAR Genom. Bioinform. https://doi.org/10.1093/nargab/lqae031 (2024).

  • Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34, 57–65 (2013).

    CAS  PubMed  Google Scholar 

  • Rogers, M. F., Shihab, H. A., Gaunt, T. R. & Campbell, C. CScape: a tool for predicting oncogenic single-point mutations in the cancer genome. Sci. Rep. 7, 11597 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Caswell, T. A. et al. matplotlib/matplotlib: REL: v.3.7.5. Zenodo https://zenodo.org/records/10669804 (2024).

  • Read Entire Article