A practical guide to reactive state management in Python
Introduction
I maintain reaktiv. When I demo it to Python teams, I get the same response: "Why do I need this? I can just call functions when things change."
Fair question. Python has excellent patterns for coordinating state changes. You can trigger updates manually, use the observer pattern, or set up event systems. Most Python applications handle state coordination just fine.
But some don't.
If you're building systems where state changes cascade through multiple components, where derived values need to stay synchronized, or where manual coordination is becoming a maintenance burden - signals might solve real problems for you.
Frontend developers recognize the pattern immediately. They've dealt with forgetting to trigger updates when state changes, or having component state get out of sync. Signals solve the "forgot to update X when Y changed" class of bugs.
This manual shows you when that coordination problem is worth solving with reactive programming, and when it's not.
What You'll Learn
- When reactive state management solves real problems (and when it doesn't)
- How to adopt signals incrementally in existing systems
- Patterns that work in production Python applications
Let's start with what breaks as state coordination scales.
Table of Contents
- The Problem with Traditional State Management
- What Are Signals, Really?
- The Mental Model Shift
- When Signals Matter (And When They Don't)
- Common Patterns and Anti-Patterns
- Real-World Scenarios
- Performance Considerations
- Integration Strategies
- Testing Reactive Code
- Migration Guide
The Problem with Traditional State Management
As developers, we've all written variations of this code:
class OrderService: def __init__(self): self.orders = [] self.total_revenue = 0.0 self.daily_stats = {} self.notification_service = NotificationService() self.analytics_service = AnalyticsService() def add_order(self, order): self.orders.append(order) self.total_revenue += order.amount self._update_daily_stats(order) self._send_notifications(order) self._track_analytics(order) def _update_daily_stats(self, order): date = order.created_at.date() if date not in self.daily_stats: self.daily_stats[date] = {"count": 0, "revenue": 0.0} self.daily_stats[date]["count"] += 1 self.daily_stats[date]["revenue"] += order.amount def _send_notifications(self, order): if order.amount > 1000: self.notification_service.send_high_value_alert(order) if len(self.orders) % 100 == 0: self.notification_service.send_milestone_alert(len(self.orders)) def _track_analytics(self, order): self.analytics_service.track_order(order) if self.total_revenue > 50000: self.analytics_service.track_milestone("revenue_50k")This looks reasonable at first glance. But let's visualize the hidden complexity:
graph TD A[add_order called] --> B[Update orders list] B --> C[Update total_revenue] C --> D[Update daily_stats] D --> E[Send notifications] E --> F[Track analytics] G[❌ Miss one step?] --> H[Silent bugs] I[❌ Add new derived state?] --> J[Update every entry point] K[❌ Race condition?] --> L[Inconsistent state] style G fill:#F44336,color:#fff style I fill:#F44336,color:#fff style K fill:#F44336,color:#fff style H fill:#D32F2F,color:#fff style J fill:#D32F2F,color:#fff style L fill:#D32F2F,color:#fff
The Hidden Dependencies
The real problem isn't visible in the code - it's the implicit dependency graph:
graph LR Orders[orders] --> Revenue[total_revenue] Orders --> Stats[daily_stats] Orders --> Notifications[notifications] Orders --> Analytics[analytics] Revenue --> Analytics Stats --> Notifications classDef implicit stroke-dasharray: 5 5 class Revenue,Stats,Notifications,Analytics implicit
These dependencies are implicit and manually maintained. Every time orders changes, you must remember to update all dependent values in the correct order.
1. Tight Coupling Through Side Effects
Every time we add an order, we must remember to update:
- Total revenue
- Daily statistics
- Notifications
- Analytics
- Any future derived state
Miss one update? Silent bugs. Add a new derived value? Modify every entry point.
2. Implicit Dependencies
The relationship between orders and derived state is buried in imperative code. New developers (or future you) must trace through method calls to understand what depends on what.
3. Inconsistent State Windows
Between the moment orders.append(order) executes and total_revenue += order.amount completes, your system is in an inconsistent state. In concurrent environments, this creates race conditions.
4. Testing Complexity
Testing requires mocking all the side effects, or carefully orchestrating partial updates. Want to test just the revenue calculation? Good luck isolating it.
5. Performance Blind Spots
Every order addition triggers every derived calculation, even if only some values are actually needed. No easy way to optimize without restructuring.
What Are Signals, Really?
Signals aren't just "reactive variables." They're a dependency graph abstraction that inverts the control flow of state management.
Important: Signals are value containers, not event streams. If you're thinking "this sounds like event listeners," there's a key difference. Signals hold current state and create a snapshot of your application at any point in time. When you call signal(), you get the current value - not a subscription to future events.
# Signal: value container (current state) user_count = Signal(42) print(user_count()) # 42 - current value, right now # Event listener: reacts to future events button.addEventListener('click', handler) # waits for future clicksThis distinction matters. Signals create a state graph-a snapshot of how values relate to each other at any moment. Event listeners create reaction patterns-responses to things happening over time.
The Dependency Graph Model
graph LR subgraph "Traditional Approach (Push-based)" A1[X changes] --> B1[Manually update Y] B1 --> C1[Manually update Z] C1 --> D1[Manually notify observers] end subgraph "Signals Approach (Pull-based)" A2[X = Signal] --> B2[Y = Computed from X] A2 --> C2[Z = Computed from X, Y] B2 --> C2 C2 --> D2[Effect observes X, Y, Z] E2["X.set(new_value)"] --> F2[Y and Z update automatically] end style A1 fill:#F44336,color:#fff style A2 fill:#4CAF50,color:#fff
Instead of push-based updates (imperative):
# When X changes, manually update Y and Z x = new_value y = calculate_y(x) z = calculate_z(x, y) notify_observers(x, y, z)Signals provide pull-based derivation (declarative):
# Define relationships once x = Signal(initial_value) y = Computed(lambda: calculate_y(x())) z = Computed(lambda: calculate_z(x(), y())) Effect(lambda: notify_observers(x(), y(), z())) # Updates happen automatically x.set(new_value) # y, z, and notifications update automaticallyThe Three Primitives
graph LR
subgraph "Signal Primitives"
A[Signal
Holds value
Notifies changes]
B[Computed
Derives from others
Caches result]
C[Effect
Performs side effects
Runs when deps change]
end
A --> B
A --> C
B --> B2[Other Computed]
style A fill:#2196F3,color:#fff
style B fill:#9C27B0,color:#fff
style C fill:#FF9800,color:#fff
Think of them as:
- Signal: A cell in a spreadsheet that holds a value
- Computed: A formula cell that derives from other cells (e.g., =A1+B1)
- Effect: A macro that runs when referenced cells change
The key insight: your entire application state becomes a live spreadsheet where changing one cell automatically updates all dependent cells.
State Snapshots vs Event Reactions
graph LR subgraph "Signals: State Snapshot" S1[user: Signal] --> S2["name: 'John'"] S1 --> S3["age: 30"] SC1[user_display: Computed] --> S4["'John (30)'"] S1 --> SC1 Note1["📸 Current state, right now"] end subgraph "Event Listeners: Future Reactions" E1[button.addEventListener] --> E2["click handler"] E3[window.addEventListener] --> E4["resize handler"] E5[socket.on] --> E6["message handler"] E7["...waiting for events"] Note2["🎯 Waiting for future events"] end style S1 fill:#2196F3,color:#fff style SC1 fill:#9C27B0,color:#fff style E1 fill:#FF9800,color:#fff
When you access a signal, you're asking: "What's the current state?" When you set up an event listener, you're saying: "Do this when something happens later."
Example: Order Processing with Signals
graph TD Orders[orders: Signal] --> Revenue[total_revenue: Computed] Orders --> Stats[daily_stats: Computed] Orders --> Count[order_count: Computed] Revenue --> NotifEffect[notification_effect: Effect] Stats --> NotifEffect Count --> NotifEffect Orders --> AnalyticsEffect[analytics_effect: Effect] Revenue --> AnalyticsEffect style Orders fill:#2196F3,color:#fff style Revenue fill:#9C27B0,color:#fff style Stats fill:#9C27B0,color:#fff style Count fill:#9C27B0,color:#fff style NotifEffect fill:#FF9800,color:#fff style AnalyticsEffect fill:#FF9800,color:#fff
The Mental Model Shift
The hardest part about adopting Signals isn't the API - it's the mental model shift from imperative to declarative state management.
Before vs After: Visualization
flowchart LR subgraph "Imperative Thinking (Before)" A1[User Action] --> B1[Step 1: Update user] B1 --> C1[Step 2: Update stats] C1 --> D1[Step 3: Check achievements] D1 --> E1[Step 4: Update leaderboard] E1 --> F1[Step 5: Send notification] F1 --> G1[Step 6: Log activity] H1[❌ Easy to miss steps] I1[❌ Order matters] J1[❌ Hard to test parts] end subgraph "Declarative Thinking (After)" A2[user_action: Signal] A2 --> B2[user_stats: Computed] A2 --> C2[achievements: Computed] B2 --> C2 B2 --> D2[leaderboard: Computed] C2 --> E2[notification_effect: Effect] A2 --> F2[logging_effect: Effect] G2[✅ Relationships declared once] H2[✅ Order handled automatically] I2[✅ Easy to test individually] end style A1 fill:#F44336,color:#fff style A2 fill:#4CAF50,color:#fff
Before: Imperative Thinking
"When this happens, do these things in this order."
def process_user_action(user_id, action): user = get_user(user_id) user.last_action = action user.last_active = datetime.now() update_user_stats(user) check_achievement_progress(user) update_leaderboard(user) send_activity_notification(user) log_user_activity(user, action)After: Declarative Thinking
"These relationships always hold true."
# Define relationships once user_action = Signal(None) user_last_active = Computed(lambda: datetime.now() if user_action() else None) user_stats = Computed(lambda: calculate_stats(user_action())) achievements = Computed(lambda: check_achievements(user_stats())) leaderboard_position = Computed(lambda: calculate_position(user_stats())) # Effects for side effects Effect(lambda: send_notification(user_stats()) if user_action() else None) Effect(lambda: log_activity(user_action()) if user_action() else None) # Usage becomes simple def process_user_action(user_id, action): user_action.set(action) # Everything else happens automaticallyDependency Flow Visualization
graph LR subgraph "Signal Dependency Flow" UA[user_action] --> ULA[user_last_active] UA --> US[user_stats] US --> ACH[achievements] US --> LB[leaderboard_position] US --> NE[notification_effect] UA --> LE[logging_effect] end subgraph "Change Propagation" Change["user_action.set()"] --> Trigger[Triggers computation chain] Trigger --> Auto[All dependent values update automatically] end style UA fill:#2196F3,color:#fff style US fill:#9C27B0,color:#fff style ACH fill:#9C27B0,color:#fff style LB fill:#9C27B0,color:#fff style ULA fill:#9C27B0,color:#fff style NE fill:#FF9800,color:#fff style LE fill:#FF9800,color:#fff
When Signals Matter (And When They Don't)
Signals Shine When: Visual Patterns
graph TB subgraph "Complex Derived State" UP[user_profile] --> UPerm[user_permissions] UP --> UTheme[ui_theme] UPerm --> Dashboard[dashboard_config] UTheme --> Dashboard end subgraph "Cross-Cutting Concerns" Config[app_config] --> DB[database_pool] Config --> Cache[cache_client] Config --> Logger[logger_config] Config --> Monitor[monitoring] end subgraph "Real-Time Data Flows" Raw[raw_market_data] --> Norm[normalized_data] Norm --> Risk[risk_metrics] Risk --> Alerts[alerts] Alerts --> Broadcast[broadcast_effect] end subgraph "State Synchronization" Model[model_data] --> JSON[json_representation] Model --> XML[xml_representation] Model --> DB2[database_record] JSON --> CacheEffect[cache_effect] end style UP fill:#2196F3,color:#fff style Config fill:#2196F3,color:#fff style Raw fill:#2196F3,color:#fff style Model fill:#2196F3,color:#fff
Signals Are Overkill When:
graph LR
subgraph "❌ Avoid Signals For"
A[Simple Linear
Transformations]
B[One-Shot
Calculations]
C[Pure Request-Response
Patterns]
end
subgraph "✅ Use Regular Functions"
D[validate → enrich → save]
E["calculate_tax(order)"]
F[HTTP GET /users/123]
end
A --> D
B --> E
C --> F
style A fill:#F44336,color:#fff
style B fill:#F44336,color:#fff
style C fill:#F44336,color:#fff
style D fill:#4CAF50,color:#fff
style E fill:#4CAF50,color:#fff
style F fill:#4CAF50,color:#fff
Common Patterns and Anti-Patterns
Pattern: Configuration Cascades
graph LR Config[config: Signal] --> DBConfig[db_config: Computed] Config --> RedisConfig[redis_config: Computed] DBConfig --> DBPool[db_pool: Computed] RedisConfig --> CacheClient[cache_client: Computed] Config --> MonitorEffect[monitoring_effect: Effect] subgraph "✅ Good: Grouped Configuration" GoodConfig["{host, port, user, password}"] end subgraph "❌ Bad: Over-granular Signals" BadHost[db_host: Signal] BadPort[db_port: Signal] BadUser[db_user: Signal] BadPass[db_password: Signal] end style Config fill:#2196F3,color:#fff style GoodConfig fill:#4CAF50,color:#fff style BadHost fill:#F44336,color:#fff style BadPort fill:#F44336,color:#fff style BadUser fill:#F44336,color:#fff style BadPass fill:#F44336,color:#fff
Pattern: Data Processing Pipelines
graph LR Raw[raw_data: Signal] --> Clean[cleaned_data: Computed] Clean --> Agg[aggregated_data: Computed] Agg --> Format[formatted_output: Computed] Format --> CacheEffect[cache_effect: Effect] subgraph "❌ Anti-Pattern: Side Effects in Computed" BadComputed[computed_with_api_call] BadComputed -.-> API[expensive_api_call] end subgraph "✅ Better: Effects for Side Effects" GoodTrigger[api_trigger: Signal] GoodTrigger --> GoodEffect[api_effect: Effect] end style Raw fill:#2196F3,color:#fff style Clean fill:#9C27B0,color:#fff style Agg fill:#9C27B0,color:#fff style Format fill:#9C27B0,color:#fff style CacheEffect fill:#FF9800,color:#fff style BadComputed fill:#F44336,color:#fff style GoodTrigger fill:#4CAF50,color:#fff style GoodEffect fill:#4CAF50,color:#fff
Pattern: Event Sourcing Integration
Good: Signals as event processors
event_stream = Signal([]) current_state = Computed(lambda: reduce_events(event_stream())) projections = { "user_stats": Computed(lambda: project_user_stats(event_stream())), "daily_summary": Computed(lambda: project_daily_summary(event_stream())) } # Append events, projections update automatically def add_event(event): event_stream.update(lambda events: events + [event])graph TD EventStream[event_stream: Signal] --> CurrentState[current_state: Computed] EventStream --> UserStats[user_stats: Computed] EventStream --> DailySummary[daily_summary: Computed] AddEvent[add_event] --> EventStream style EventStream fill:#2196F3,color:#fff style CurrentState fill:#9C27B0,color:#fff style UserStats fill:#9C27B0,color:#fff style DailySummary fill:#9C27B0,color:#fff style AddEvent fill:#4CAF50,color:#fff
Real-World Scenarios
Scenario 1: Microservice Configuration Management
graph TB subgraph "Configuration Sources" ENV[env_config: Signal] FILE[file_config: Signal] REMOTE[remote_config: Signal] end subgraph "Merged Configuration" ENV --> EFFECTIVE[effective_config: Computed] FILE --> EFFECTIVE REMOTE --> EFFECTIVE end subgraph "Service Configs" EFFECTIVE --> DBCONFIG[database_config: Computed] EFFECTIVE --> REDISCONFIG[redis_config: Computed] EFFECTIVE --> FEATURES[feature_flags: Computed] end subgraph "Service Instances" DBCONFIG --> DBPOOL[db_pool: Computed] REDISCONFIG --> CACHECLIENT[cache_client: Computed] end subgraph "Effects" EFFECTIVE --> LOGGER[config_logger: Effect] EFFECTIVE --> METRICS[metrics_updater: Effect] end style ENV fill:#4CAF50,color:#fff style FILE fill:#4CAF50,color:#fff style REMOTE fill:#4CAF50,color:#fff style EFFECTIVE fill:#9C27B0,color:#fff
class ServiceConfig: def __init__(self): # Base configuration sources self.env_config = Signal(os.environ.copy()) self.file_config = Signal(load_config_file()) self.remote_config = Signal({}) # Updated via API calls # Merged configuration with precedence self.effective_config = Computed(lambda: { **self.file_config(), **self.remote_config(), **self.env_config() }) # Service-specific configurations self.database_config = Computed( lambda: DatabaseConfig.from_dict(self.effective_config().get("database", {})) ) self.redis_config = Computed( lambda: RedisConfig.from_dict(self.effective_config().get("redis", {})) ) self.feature_flags = Computed( lambda: self.effective_config().get("features", {}) ) # Derived services self.db_pool = Computed(lambda: create_database_pool(self.database_config())) self.cache_client = Computed(lambda: create_redis_client(self.redis_config())) # Effects for configuration changes self._config_logger = Effect( lambda: logger.info(f"Config updated: {list(self.effective_config().keys())}") ) self._metrics_updater = Effect( lambda: update_config_metrics(self.effective_config()) ) def update_remote_config(self, new_config): """Called by configuration service webhook""" self.remote_config.set(new_config) # Database pool, cache client, etc. automatically recreatedScenario 2: Real-Time Analytics Dashboard
graph TB subgraph "Data Sources" EVENTS[raw_events: Signal] SESSIONS[user_sessions: Signal] METRICS[system_metrics: Signal] TIMEWINDOW[time_window: Signal] end subgraph "Time Filtering" TIMEWINDOW --> CUTOFF[cutoff_time: Computed] EVENTS --> RECENT[recent_events: Computed] SESSIONS --> ACTIVE[active_sessions: Computed] CUTOFF --> RECENT CUTOFF --> ACTIVE end subgraph "Analytics" RECENT --> COUNTS[event_counts: Computed] COUNTS --> CONVERSION[conversion_rate: Computed] ACTIVE --> USERCOUNT[active_user_count: Computed] COUNTS --> DASHBOARD[dashboard_data: Computed] CONVERSION --> DASHBOARD USERCOUNT --> DASHBOARD METRICS --> DASHBOARD TIMEWINDOW --> DASHBOARD end subgraph "Effects" DASHBOARD --> WEBSOCKET[websocket_broadcaster: Effect] CONVERSION --> ALERTS[alert_monitor: Effect] end style EVENTS fill:#2196F3,color:#fff style SESSIONS fill:#2196F3,color:#fff style METRICS fill:#2196F3,color:#fff style TIMEWINDOW fill:#2196F3,color:#fff
Scenario 3: Distributed System Health Monitoring
graph TB subgraph "Raw Status Data" NODES[node_statuses: Signal] SERVICES[service_statuses: Signal] end subgraph "Cluster Health Metrics" NODES --> HEALTHY[healthy_nodes: Computed] HEALTHY --> CAPACITY[cluster_capacity: Computed] NODES --> LOAD[cluster_load: Computed] CAPACITY --> LOADPCT[load_percentage: Computed] LOAD --> LOADPCT end subgraph "Service Availability" SERVICES --> AVAILABILITY[service_availability: Computed] AVAILABILITY --> CRITICAL[critical_services: Computed] end subgraph "Automated Actions" HEALTHY --> LBUPDATE[load_balancer_updater: Effect] CRITICAL --> INCIDENT[alert_manager: Effect] LOADPCT --> SCALER[capacity_scaler: Effect] end style NODES fill:#2196F3,color:#fff style SERVICES fill:#2196F3,color:#fff style LBUPDATE fill:#FF9800,color:#fff style INCIDENT fill:#E91E63,color:#fff style SCALER fill:#9C27B0,color:#fff
Performance Considerations
Fine-Grained Reactivity Visualization
graph LR subgraph "Traditional: Everything Recalculates" T1[Update Data] --> T2[Calculate Mean] T1 --> T3[Calculate Std Dev] T1 --> T4[Calculate Percentiles] T5[❌ All run every time] end subgraph "Signals: Only Affected Parts Run" S1["data.set()"] --> S2[Check: mean accessed?] S2 --> S3[✅ Calculate mean only] S4[std_dev not accessed] S5[percentiles not accessed] S6[✅ Lazy evaluation] end style T1 fill:#F44336,color:#fff style S1 fill:#4CAF50,color:#fff style T5 fill:#D32F2F,color:#fff style S6 fill:#388E3C,color:#fff
Memory Management Pattern
graph TB
Signal --> WeakRef[Weak References
to Dependents]
subgraph "❌ Problem: Effect GC"
Effect1[Effect created] -.-> GC[Garbage Collected]
GC --> Lost[Effect lost!]
end
subgraph "✅ Solution: Retain Reference"
Component[Component] --> EffectRef[self._effect]
EffectRef --> Effect2[Effect retained]
end
style Effect1 fill:#F44336,color:#fff
style Lost fill:#D32F2F,color:#fff
style EffectRef fill:#4CAF50,color:#fff
style Effect2 fill:#388E3C,color:#fff
Batching Updates Pattern
sequenceDiagram participant App participant Batcher participant Signal participant Computeds App->>Batcher: update1 App->>Batcher: update2 App->>Batcher: update3 Note over Batcher: Batch for 100ms Batcher->>Signal: apply all updates Signal->>Computeds: single notification Computeds->>App: updated values
Migration Guide
Migration Phases Visualization
graph TB
subgraph "Phase 1: Identify Candidates"
P1A[Manual State Sync]
P1B[Observer Patterns]
P1C[Cache Invalidation]
end
subgraph "Phase 2: Gradual Replacement"
P2A[Replace Leaf Nodes
with Signals]
P2B[Add Computed Values
for Derived State]
P2C[Replace Side Effects
with Effects]
end
subgraph "Phase 3: Remove Manual Coordination"
P3A[Declarative
Relationships]
P3B[Automatic
Updates]
P3C[Simplified
API]
end
P1A --> P2A
P1B --> P2B
P1C --> P2C
P2A --> P3A
P2B --> P3B
P2C --> P3C
style P1A fill:#FF9800,color:#fff
style P1B fill:#FF9800,color:#fff
style P1C fill:#FF9800,color:#fff
style P2A fill:#4CAF50,color:#fff
style P2B fill:#4CAF50,color:#fff
style P2C fill:#4CAF50,color:#fff
style P3A fill:#2196F3,color:#fff
style P3B fill:#2196F3,color:#fff
style P3C fill:#2196F3,color:#fff
Before and After Architecture
graph TB subgraph "Before: Manual Coordination" OrderAdd["add_order()"] --> OrderList["orders.append()"] OrderList --> Revenue["total_revenue +="] Revenue --> Stats["update_daily_stats()"] Stats --> Notif["send_notifications()"] Notif --> Analytics["track_analytics()"] Error1[❌ Forget a step?] Error2[❌ Wrong order?] Error3[❌ Race condition?] end subgraph "After: Declarative Relationships" OrderSignal[orders: Signal] OrderSignal --> RevenueComp[total_revenue: Computed] OrderSignal --> StatsComp[daily_stats: Computed] OrderSignal --> NotifEffect[notification_effect: Effect] OrderSignal --> AnalyticsEffect[analytics_effect: Effect] Success1[✅ Relationships declared once] Success2[✅ Automatic consistency] Success3[✅ Easy to test] end style OrderAdd fill:#F44336,color:#fff style OrderSignal fill:#4CAF50,color:#fff style Error1 fill:#D32F2F,color:#fff style Error2 fill:#D32F2F,color:#fff style Error3 fill:#D32F2F,color:#fff style Success1 fill:#388E3C,color:#fff style Success2 fill:#388E3C,color:#fff style Success3 fill:#388E3C,color:#fff
Conclusion
Signals represent a fundamental shift from imperative to declarative state management. They're not just "reactive variables" - they're a way to express complex state relationships that automatically maintain consistency.
The Signal Advantage
graph LR subgraph "Traditional Challenges" TC1[Manual Coordination] TC2[Implicit Dependencies] TC3[Inconsistent State] TC4[Testing Complexity] TC5[Performance Blind Spots] end subgraph "Signal Solutions" SS1[Automatic Updates] SS2[Explicit Relationships] SS3[Always Consistent] SS4[Isolated Testing] SS5[Fine-grained Reactivity] end TC1 --> SS1 TC2 --> SS2 TC3 --> SS3 TC4 --> SS4 TC5 --> SS5 style TC1 fill:#F44336,color:#fff style TC2 fill:#F44336,color:#fff style TC3 fill:#F44336,color:#fff style TC4 fill:#F44336,color:#fff style TC5 fill:#F44336,color:#fff style SS1 fill:#4CAF50,color:#fff style SS2 fill:#4CAF50,color:#fff style SS3 fill:#4CAF50,color:#fff style SS4 fill:#4CAF50,color:#fff style SS5 fill:#4CAF50,color:#fff
The key insight is that most state management bugs come from forgetting to update something when related state changes. Signals eliminate this entire class of bugs by making relationships explicit and automatic.
Start small: identify one area of your codebase where you manually coordinate state updates. Replace it with Signals, and experience the difference. Once you see how much cleaner and more reliable it makes your code, you'll start seeing Signal opportunities everywhere.
Remember: Signals are a tool, not a religion. Use them where they add value - complex derived state, cross-cutting concerns, real-time data flows. Skip them for simple, linear transformations.