Bergson, H. Duration and Simultaneity: Bergson and the Einsteinian Universe (Clinamen, 1999).
Lashley, K. S. in Cerebral Mechanisms in Behavior (ed. Jeffress, L. A.) 112–136 (Wiley, 1951).
Eagleman, D. M. Brain Time (Edge Foundation, 2009).
Buonomano, D. Your Brain is a Time Machine: The Neuroscience and Physics of Time (W. W. Norton & Company, 2017).
Robbe, D. Lost in time: relocating the perception of duration outside the brain. Neurosci. Biobehav. Rev. 153, 105312 (2023).
Aristotle. The Works of Aristotle Vol. 3 (trans. Beare, J. I.) (Oxford Univ. Press, 1930).
Wittmann, M. The inner sense of time: how the brain creates a representation of duration. Nat. Rev. Neurosci. 14, 217–223 (2013).
Howard, M. W. et al. A unified mathematical framework for coding time, space, and sequences in the hippocampal region. J. Neurosci. 34, 4692–4707 (2014).
Cohen, J. Psychological Time in Health and Disease (Charles C. Thomas, 1967).
Evans, V. The Structure of Time: Language, Meaning and Temporal Cognition (John Benjamins, 2004).
Ornstein, R. On the Experience of Time (Penguin, 1969).
Michon, J. A., Jackson, J. L. & Michon, J. A. in Time, Mind and Behavior (eds Michon, J. A. & Jackson, J. L.) 21–52 (Springer, 1985).
O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).
McNaughton, B. L. et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996).
Hasselmo, M. E. & Eichenbaum, H. Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Netw. 18, 1172–1190 (2005).
Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal–entorhinal system. Nat. Neurosci. 16, 130–138 (2013).
Merchant, H., Harrington, D. L. & Meck, W. H. Neural basis of the perception and estimation of time. Annu. Rev. Neurosci. 36, 313–336 (2013).
Wittmann, M. & van Wassenhove, V. The experience of time: neural mechanisms and the interplay of emotion, cognition and embodiment. Philos. Trans. R. Soc. B 364, 1809–1813 (2009).
Pöppel, E. in Handbook of Sensory Physiology (eds Held, R., Leibotwitz, H. W. & Teuber, H.-L.) 713–729 (Springer, 1972).
Wearden, J. The Psychology of Time Perception (Palgrave Macmillan, 2016).
Hinchliff, M. A defense of presentism in a relativistic setting. Philos. Sci. 67, S575–S586 (2000).
Sider, T. Presentism and ontological commitment. J. Philos. 96, 325–347 (1999).
Nuñez, R. & Sweetser, E. Looking ahead to the past: convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cogn. Sci. 30, 401–450 (2006).
Casasanto, D. & Boroditsky, L. Time in the mind: using space to think about time. Cognition 106, 579–593 (2008).
Boroditsky, L. Metaphoric structuring: understanding time through spatial metaphors. Cognition 75, 1–28 (2000).
Smolin, L. Time Reborn: From the Crisis in Physics to the Future of the Universe (Houghton Mifflin Harcourt, 2013).
Smolin, L. Temporal naturalism. Stud. Hist. Philos. Mod. Phys. 52, 86–102 (2015).
Hogan, C. J. Why the universe is just so? Rev. Mod. Phys. 72, 1149 (2000).
Carroll, S. From Eternity to Here: The Quest for the Ultimate Theory of Time (Dutton. 2010).
Hicks, R. E., Miller, G. W. & Kinsbourne, M. Prospective and retrospective judgments of time as a function of amount of information processed. Am. J. Psychol. 89, 719–730 (1976).
Block, R. A. & Zakay, D. Prospective and retrospective duration judgments: a meta-analytic review. Psychon. Bull. Rev. 4, 184–197 (1997).
Tsao, A., Yousefzadeh, S. A., Meck, W. H., Moser, M.-B. & Moser, E. I. The neural bases for timing of durations. Nat. Rev. Neurosci. 23, 646–665 (2022).
Coull, J. T. & Nobre, A. C. Dissociating explicit timing from temporal expectation with FMRI. Curr. Opin. Neurobiol. 18, 137–144 (2008).
Buhusi, C. V. & Meck, W. H. What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755–765 (2005).
Paton, J. J. & Buonomano, D. V. The neural basis of timing: distributed mechanisms for diverse functions. Neuron 98, 687–705 (2008).
Gallistel, C. R. The Organization of Action (N.J. Erlbaum, 1980).
Wheeler, J. A. A Journey into Gravity and Spacetime (W. H. Freeman, 1999).
Weyl, H. Space-Time-Matter 4th edn (Addition, Dover Publication, 1922/2013).
Hawking, S. W. Brief History of Time (Bantam, 1992).
Hall, E. T. The Dance of Life (Doubleday, 1983).
Walsh, V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci. 7, 483–488 (2003).
Kant, I. Critique of Pure Reason (trans. Guyer, P. & Wood, A.) (Cambridge Univ. Press, 1998).
Piaget, J. The Child’s Conception of Time (Ballantine Books, 1927/1969).
Wilkening, F. Integrating velocity, time, and distance information: a developmental study. Cogn. Psychol. 13, 231–247 (1981).
Levin, I., Israeli, E. & Darom, E. The development of time concepts in young children: the relations between duration and succession. Child Dev. 49, 755–764 (1978).
Tulving, E. Elements of Episodic Memory (Oxford Univ. Press, 1983).
Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).
Aronowitz, S. Semanticization challenges the episodic–semantic distinction. Br. J. Philos. Sci. https://doi.org/10.1086/721760 (2022).
Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).
Buzsáki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840 (2005).
Tulving, E. in Organisation of Memory (eds Tulving, E. & Donaldson, W.) 381–403 (Academic, 1972).
Friston, K. & Buzsáki, G. The functional anatomy of time: what and when in the brain. Trends Cogn. Sci. 20, 500–511 (2016).
Sarkar, A., Wang, C., Zuo, S. & Howard, M. W. ‘What’ x ‘When’ working memory representations using Laplace neural manifolds. Preprint at https://doi.org/10.48550/arXiv.2409.20484 (2024).
Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Patt. Anal. Mach. Intell. 35, 1798–1828 (2013).
Higgins, I. et al. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons. Nat. Commun. 12, 6456 (2021).
Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D., Goodale, M. & Mansfield, R. J. W.) 549–586 (MIT Press, 1982).
Pallier, C., Devauchelle, A.-D. & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proc. Natl Acad. Sci. USA 108, 2522–2527 (2011).
Eichenbaum, H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120 (2004).
Assabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).
Yang, W. et al. Selection of experience for memory by hippocampal sharp wave ripples. Science 383, 1478–1483 (2024).
Chang, H. et al. Sleep microstructure organizes memory replay. Nature 637, 1161–1169 (2025).
Tacikowski, P., Kalender, G., Ciliberti, D. & Fried, I. Human hippocampal and entorhinal neurons encode the temporal structure of experience. Nature 635, 160–167 (2024).
Rigotti M, O. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).
Taxidis J, E. A. et al. Differential emergence and stability of sensory and temporal representations in context-specific hippocampal sequences. Neuron 108, 984–998 (2020).
Fetterman, J. G. & Killeen, P. R. Categorical scaling of time: implications for clock-counter models. J. Exp. Psychol. Anim. Behav. Process. 21, 43–63 (1995).
Gibbon, J. Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev. 84, 279–325 (1977).
Gibbon, J. & Church, R. M. Time left: linear versus logarithmic subjective timing. J. Exp. Psychol. Anim. Behav. Process. 7, 87–108 (1981).
Elliott, T. M., Christensen-Dalsgaard, J. & Kelley, D. B. Temporally selective processing of communication signals by auditory midbrain neurons. J. Neurophysiol. 105, 1620–1632 (2011).
Grube, M., Cooper, F. E., Chinnery, P. F. & Griffiths, T. D. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc. Natl Acad. Sci. USA 107, 11597–11601 (2010).
Hardy, N. F. & Buonomano, D. V. Neurocomputational models of interval and pattern timing. Curr. Opin. Behav. Sci. 8, 250–257 (2016).
Gibbon, J., Malapani, C., Dale, C. L. & Gallistel, C. R. Toward a neurobiology of temporal cognition: advances and challenges. Curr. Opin. Neurobiol. 7, 170–184 (1997).
Gallistel, C. R. & Gibbon, J. Time, rate, and conditioning. Psychol. Rev. 107, 289–344 (2000).
Killeen, P. R. & Fetterman, J. G. A behavioral theory of timing. Psychol. Rev. 95, 274–295 (1988).
Matell, M. S. & Meck, W. H. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res. Cogn. Brain Res. 21, 139–170 (2004).
Naghibi, N. et al. Embodying time in the brain: a multi-dimensional neuroimaging meta-analysis of duration processing studies. Neuropsychol. Rev. 34, 277–298 (2024).
Mondok, C. & Wiener, M. Selectivity of timing: a meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Front. Hum. Neurosci. 16, 1000995 (2023).
Wearden, J. H., Edwards, H., Fakhri, M. & Percival, A. Quart. Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. J. Exp. Psychol. 51, 97–120 (1998).
van Wassenhove, V., Buonomano, D. V., Shimojo, S. & Shams, L. Distortions of subjective time perception within and across senses. PLoS ONE 3, e1437 (2008).
Staddon, J. & Higa, J. Time and memory: towards a pacemaker-free theory of interval timing. J. Exp. Anal. Behav. 71, 215–251 (1999).
Algom, D. The Weber–Fechner law: a misnomer that persists but that should go away. Psychol. Rev. 128, 757–765 (2021).
Dehaene, S. The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn. Sci. 7, 145–147 (2003).
Mauk, M. D. & Buonomano, D. V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340 (2004).
Fechner, G. T. in Elements of Psychophysics [Elemente der Psychophysik] Vol. 1 (eds Howes, D. H. & Boring, E. G.) (Holt, Rinehart and Winston, 1966).
Hooper, S. L., Buchman, E. & Hobbs, K. H. A computational role for slow conductances: single-neuron models that measure duration. Nat. Neurosci. 5, 552–556 (2002).
Saitoh, I. & Suga, N. Long delay lines for ranging are created by inhibition in the inferior colliculus of the mustached bat. J. Neurophysiol. 74, 1–11 (1995).
Guo, C., Huson, V., Macosko, E. Z. & Regehr, W. G. Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells. Nat. Commun. 12, 5491 (2021).
Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).
Abbott, L. R. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).
Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).
English, D. F. et al. Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. Neuron 96, 505–520 (2017).
Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).
Kojima, S. & Goldman-Rakic, P. S. Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res. 248, 43–49 (1982).
Fuster, J. M. The prefrontal cortex — an update: time is of the essence. Neuron 30, 319–333 (2001).
Reutimann, J., Yakovlev, V., Fusi, S. & Senn, W. Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295–3303 (2004).
Durstewitz, D. Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342–5353 (2003).
Knudsen, E. B., Powers, M. E. & Moxon, K. A. Dissociating movement from movement timing in the rat primary motor cortex. J. Neurosci. 34, 15576–15586 (2014).
Niki, H. & Watanabe, M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 171, 213–224 (1979).
Renoult, L., Roux, S. & Riehle, A. Time is a rubberband: neural activity in monkey motor cortex in relation to time estimation. Eur. J. Neurosci. 23, 3098–3108 (2006).
Tsao, A. et al. Integrating time from experience in the lateral entorhinal cortex. Nature 561, 57–62 (2018).
Leon, M. I. & Shadlen, M. N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003).
Mello, G. B., Soares, S. & Paton, J. J. A scalable population code for time in the striatum. Curr. Biol. 25, 1113–1122 (2015).
Gouvêa, T. S., Monteiro, T., Soares, S., Atallah, B. V. & Paton, J. J. Ongoing behavior predicts perceptual report of interval duration. Front. Neurorobot. 8, 10 (2014).
Bueti, D. The sensory representation of time. Front. Integr. Neurosci. 5, 34 (2011).
Jaldow, E. J., Oakley, D. A. & Davey, G. C. Performance of decorticated rats on fixed interval and fixed time schedules. Eur. J. Neurosci. 1, 461–470 (1989).
Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).
Fujisawa, S., Amarasingham, A., Harrison, M. T. & Buzsáki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 823–833 (2008).
Itskov, V., Curto, C., Pastalkova, E. & Buzsáki, G. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosci. 31, 2828–2834 (2011).
Kraus, B. J., Robinson, R. J. II, White, J. A., Eichenbaum, H. & Hasselmo, M. E. Hippocampal ‘time cells’: time versus path integration. Neuron 78, 1090–1101 (2013).
MacDonald, C. J., Lepag, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal ‘time cells’ bridge the gap in memory for discontiguous events. Neuron 71, 737–749 (2011).
Eichenbaum, H. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15, 732–744 (2014).
Mankin, E. A. et al. Neuronal code for extended time in the hippocampus. Proc. Natl Acad. Sci. USA 109, 19462–19467 (2012).
Soldado-Magraner, S. & Buonomano, D. V. Neural sequences and the encoding of time. Adv. Exp. Med. Biol. 1455, 81–93 (2024).
Zhou, S. & Buonomano, D. V. Neural population clocks: encoding time in dynamic patterns of neural activity. Behav. Neurosci. 136, 374–382 (2022).
Mahr, J. B. & Schacter, D. L. Episodic recombination and the role of time in mental travel. Philos. Trans. R. Soc. Lond. B Biol. Sci. 379, 20230409 (2024).
Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).
Maguire, E. A. & Hassabis, D. Role of the hippocampus in imagination and future thinking. Proc. Natl Acad. Sci. USA 108, E39 (2011).
Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447 (2017).
Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).
Varga, V. et al. Working memory features are embedded in hippocampal place fields. Cell Rep. 43, 113807 (2024).
Czurkó, A., Hirase, H., Csicsvari, J. & Buzsáki, G. Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel. Eur. J. Neurosci. 11, 344–352 (1999).
Kropff, E., Carmichael, J. E., Moser, M. B. & Moser, E. I. Speed cells in the medial entorhinal cortex. Nature 523, 419–424 (2015).
Ye, J., Witter, M. P., Moser, M. B. & Moser, E. I. Entorhinal fast-spiking speed cells project to the hippocampus. Proc. Natl Acad. Sci. USA 115, E1627–E1636 (2018).
Buzsáki, G. & Tingley, D. Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22, 853–869 (2018).
Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).
Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154 (1986).
Sun, W. et al. Learning produces an orthogonalized state machine in the hippocampus. Nature 640, 165–175 (2025).
Terada, S., Sakurai, Y., Nakahara, H. & Fujisawa, S. Temporal and rate coding for discrete event sequences in the hippocampus. Neuron 94, 1–15 (2017).
Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K. & Howard, M. W. Compressed timeline of recent experience in monkey lPFC. J. Cogn. Neurosci. 30, 935–950 (2018).
Whittington, J. C. R. et al. The Tolman–Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–126 (2020).
Fenton, A. A. Remapping revisited: how the hippocampus represents different spaces. Nat. Rev. Neurosci. 25, 428–448 (2024).
Umbach, G. et al. Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proc. Natl Acad. Sci. USA 117, 28463–28474 (2020).
Wisniewski, D. Context-dependence and context-invariance in the neural coding of intentional action. Front. Psychol. 9, 2310 (2018).
Gu, B. M., van Rijn, H. & Meck, W. H. Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci. Biobehav. Rev. 48, 160–185 (2015).
van Rijn, H. Accounting for memory mechanisms in interval timing: a review. Curr. Opin. Behav. Sci. 8, 245–249 (2016).
Grabot, L. et al. The strength of alpha–beta oscillatory coupling predicts motor timing precision. J. Neurosci. 39, 3277–3291 (2019).
van Wassenhove, V. Temporal cognition and neural oscillations. Curr. Opin. Behav. Sci. 8, 124–130 (2016).
Kononowicz, T. W., Roger, C. & van Wassenhove, V. Temporal metacognition as the decoding of self-generated brain dynamics. Cereb. Cortex 29, 4366–4380 (2019).
Azizi, L., Polti, I. & van Wassenhove, V. Spontaneous α brain dynamics track the episodic ‘when’. J. Neurosci. 43, 7186–7197 (2023).
Chakravarthi, R. & Vanrullen, R. Conscious updating is a rhythmic process. Proc. Natl Acad. Sci. USA 109, 10599–10604 (2012).
Pöppel, E. Oscillations as a possible basis for time perception. Stud. Gen. 24, 85–107 (1971).
Pöppel, E. A hierarchical model of temporal perception. Trends Cogn. Sci. 1, 56–61 (1997).
Miall, R. C. The storage of time intervals using oscillating neurons. Neural Comput. 1, 359–371 (1989).
Brown, G. D. A., Preece, T. & Hulme, C. Oscillator-based memory for serial order. Psychol. Rev. 107, 127–181 (2000).
Tse, P. U., Intriligator, J., Rivest, J. & Cavanaugh, P. Attention and the subjective expansion of time. Percept. Psychophys. 66, 1171–1189 (2004).
Bar-Haim, Y., Kerem, A., Lamy, D. & Zakay, D. When time slows down: the influence of threat on time perception in anxiety. Cogn. Emot. 24, 255–263 (2010).
Gil, S. & Droit-Volet, S. Time perception, depression and sadness. Behav. Process 80, 169–176 (2009).
Matthews, W. J. & Meck, W. H. Time perception: the bad news and the good. Wiley Interdiscip. Rev. Cogn. Sci. 5, 429–446 (2014).
Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).
Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065–2069 (2003).
Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).
Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269 (2007).
Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).
Cohen, M. X. Multivariate cross-frequency coupling via generalized eigendecomposition. eLife 6, e21792 (2017).
Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).
Tingley, D., McClain, K., Kaya, E., Carpenter, J. & Buzsáki, G. A metabolic function of the hippocampal sharp wave-ripple. Nature 597, 82–86 (2021).
Watson, B. O., Levenstein, D., Greene, J. P., Gelinas, J. N. & Buzsáki, G. Network homeostasis and state dynamics of neocortical sleep. Neuron 90, 839–852 (2016).
Terzano, M. G. et al. The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8, 137–145 (1985).
McCormick, D. A., Nestvogel, D. B. & He, B. J. Neuromodulation of brain state and behavior. Annu. Rev. Neurosci. 8, 391–415 (2020).
McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).
Thomsen, L. et al. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848–851 (1998).
Richter, C. G., Babo-Rebelo, M., Schwartz, D. & Tallon-Baudry, C. Phase–amplitude coupling at the organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. NeuroImage 146, 951–958 (2017).
Penttonen, M. et al. Ultra-slow oscillation (0.025 Hz) triggers hippocampal after discharges in Wistar rats. Neuroscience 94, 735–743 (1999).
Lüthi, A. & Nedergaard, M. Anything but small: microarousals stand at the crossroad between noradrenaline signaling and key sleep functions. Neuron 113, 509–523 (2025).
Sanders, K. M., Koh, S. D., Ro, S. & Ward, S. M. Regulation of gastrointestinal motility — insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9, 633–645 (2012).
Swanson, R. A. et al. Topography of putative bi-directional interaction between hippocampal sharp-wave ripples and neocortical slow oscillations. Neuron 113, 754–768 (2025).
Hasegawa, E. et al. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science 375, 994–1000 (2022).
Zhang, Y. et al. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 112, 1862–1875 (2024).
Osorio-Forero, A. et al. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM–REM sleep cycle. Nat. Neurosci. 28, 84–96 (2025).
Krok, A. C. et al. Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature 621, 543–549 (2023).
Ledberg, A. & Robbe, D. Locomotion-related oscillatory body movements at 6–12 Hz modulate the hippocampal theta rhythm. PLoS ONE 6, e27575 (2011).
Karalis, N. & Sirota, A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat. Commun. 13, 467 (2022).
Joshi, A. et al. Dynamic synchronization between hippocampal representations and stepping. Nature 617, 125–131 (2023).
Tort, A. B. L., Laplagne, D. A., Draguhn, A. & Gonzalez, J. Global coordination of brain activity by the breathing cycle. Nat. Rev. Neurosci. 26, 333–353 (2025).
Fang, W., Jiang, X., Chen, J., Zhang, C. & Wang, L. Oscillatory control over representational geometry of sequence working memory in macaque frontal cortex. Curr. Biol. 35, 1495–1507 (2025).
Fries, P., Schröder, J.-H., Roelfsema, P. R., Singer, W. & Engel, A. K. Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22, 3739–3754 (2002).
Melloni, L. et al. Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007).
Ratcliffe, O., Shapiro, K. & Staresina, B. P. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr. Biol. 32, 2121–2129 (2022).
Sharpee, T. O. An argument for hyperbolic geometry in neural circuits. Curr. Opin. Neurobiol. 58, 101–104 (2019).
O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).
Geisler, C., Robbe, D., Zugaro, M., Sirota, A. & Buzsáki, G. Hippocampal place cell assemblies are speed-controlled oscillators. Proc. Natl Acad. Sci. USA 104, 8149–8154 (2007).
Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).
Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).
Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).
Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).
Failing, M. & Theeuwes, J. Reward alters the perception of time. Cognition 148, 19–26 (2016).
Falk, J. L. & Bindra, D. Judgment of time as a function of serial position and stress. J. Exp. Psychol. 47, 279–282 (1954).
Gable, P. A. & Poole, B. D. Time flies when you’re having approach-motivated fun. Psychol. Sci. 23, 879–886 (2012).
Droit-Volet, S., Fayolle, S. L. & Gil, S. Emotion and time perception: effects of film-induced mood. Front. Integr. Neurosci. 5, 33 (2011).
Campbell, L. A. & Bryant, R. A. How time flies: a study of novice skydivers. Behav. Res. Ther. 45, 1389–1392 (2006).
Fung, B. J., Sutlief, E. & Hussain Shuler, M. G. Dopamine and the interdependency of time perception and reward. Neurosci. Biobehav. Rev. 125, 380–391 (2021).
Meck, W. H. Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 1109, 93–107 (2006).
Drew, M. R. et al. Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J. Neurosci. 27, 7731–7739 (2007).
Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons control judgment of time. Science 354, 1273–1277 (2016).
Pastor, M. A., Artieda, J., Jahanshahi, M. & Obeso, J. A. Time estimation and reproduction is abnormal in Parkinson’s disease. Brain 115, 211–225 (1992).
Riesen, J. M. & Schnider, A. Time estimation in Parkinson’s disease: normal long duration estimation despite impaired short duration discrimination. J. Neurol. 248, 27–35 (2001).
Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M. & Jahanshahi, M. Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn. 68, 30–41 (2008).
van Maanen, L. et al. Core body temperature speeds up temporal processing and choice behavior under deadlines. Sci. Rep. 9, 10053 (2019).
Wearden, J. H. & Penton-Voak, I. S. Feeling the heat: body temperature and the rate of subjective time, revisited. Q. J. Exp. Psychol. B 48, 129–141 (1995).
Long, M. A., Jin, D. Z. & Fee, M. S. Support for a synaptic chain model of neuronal sequence generation. Nature 468, 394–399 (2010).
Petersen, P. C. & Buzsáki, G. Cooling of medial septum reveals theta phase lag coordination of hippocampal cell assemblies. Neuron 107, 731–744 (2020).
Andersen, P. & Moser, E. I. Brain temperature and hippocampal function. Hippocampus 5, 491–498 (1995).
Wittmann, M., Leland, D. S., Churan, J. & Paulus, M. P. Impaired time perception and motor timing in stimulant dependent subjects. Drug Alcohol Depend. 90, 183–192 (2007).
Meck, W. H. & Church, R. M. Cholinergic modulation of the content of temporal memory. Behav. Neurosci. 101, 457–464 (1987).
Chubykin, A. A., Roach, E. B., Bear, M. F. & Shuler, M. G. H. A cholinergic mechanism for reward timing within primary visual cortex. Neuron 77, 723–735 (2013).
Nuyens, F. M., Billieux, J. & Maurage, P. Time perception and alcohol use: a systematic review. Neurosci. Biobehav. Rev. 127, 377–403 (2021).
Atakan, Z., Morrison, P., Bossong, M. G., Martin-Santos, R. & Crippa, J. A. The effect of cannabis on perception of time: a critical review. Curr. Pharm. Des. 18, 4915–4922 (2012).
Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).
Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).
Vandecasteele, M. et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc. Natl Acad. Sci. USA 111, 13535–13540 (2014).
Peyrache, A., Lacroix, M. M., Petersen, P. C. & Buzsáki, G. Internally organized mechanisms of the head direction sense. Nat. Neurosci. 18, 569–575 (2015).
Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).
Thiele, A. & Bellgrove, M. A. Neuromodulation of attention. Neuron 97, 769–785 (2018).
McQuiston, A. R. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1. Front. Synaptic Neurosci. 6, 20 (2014).
Varela, F. J. in Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science (eds Petitot, J. et al.) 266–329 (Stanford Univ. Press, 1999).
Brown, S. W. & Stubbs, D. A. Attention and interference in prospective and retrospective timing. Perception 21, 545–557 (1992).
Brietzke, S. & Meyer, M. L. Temporal self-compression: behavioral and neural evidence that past and future selves are compressed as they move away from the present. Proc. Natl Acad. Sci. USA 118, e2101403118 (2021).
Tobin, S., Bisson, N. & Grondin, S. An ecological approach to prospective and retrospective timing of long durations: a study involving gamers. PLoS ONE 5, e9271 (2010).
Block, R. A., Hancock, P. A. & Zakay, D. How cognitive load affects duration judgments: a meta-analytic review. Acta Psychol. 134, 330–343 (2010).
Arzy, S., Adi-Japha, E. & Blanke, O. The mental time line: an analogue of the mental number line in the mapping of life events. Conscious. Cogn. 18, 781–785 (2009).
Arzy, S., Collette, S., Ionta, S., Fornari, E. & Blanke, O. Subjective mental time: the functional architecture of projecting the self to past and future. Eur. J. Neurosci. 30, 2009–2017 (2009).
Polti, I., Martin, B. & van Wassenhove, V. The effect of attention and working memory on the estimation of elapsed time. Sci. Rep. 8, 6690 (2018).
Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001).
Gilbert, D. T. & Wilson, T. D. Prospection: experiencing the future. Science 317, 1351–1354 (2007).
Wearden, J. H. & Ferrara, A. Subjective shortening in humans’ memory for stimulus duration. Q. J. Exp. Psychol. B 46, 163–186 (1993).
Coull, J. T., Cotti, J. & Vidal, F. Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: dissociating prior from posterior temporal probabilities with fMRI. NeuroImage 141, 40–51 (2016).
Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R. S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–190 (2006).
Baddeley, A. Working memory. Science 255, 556–559 (1992).
Clewett, D., DuBrow, S. & Davachi, L. Transcending time in the brain: how event memories are constructed from experience. Hippocampus 29, 162–183 (2019).
Morin, C., Brown, G. D. & Lewandowsky, S. Temporal isolation effects in recognition and serial recall. Mem. Cogn. 38, 849–859 (2010).
Ezzyat, Y. & Davachi, L. Similarity breeds proximity: pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron 81, 1179–1189 (2014).
Warren, M. & Frankel, M. Are You Thinking Clearly? 29 Reasons You Aren’t, and What to do About it (Coronet Books, 2024).
Geva, N., Deitch, D., Rubin, A. & Ziv, Y. Time and experience differentially affect distinct aspects of hippocampal representational drift. Neuron 111, 2357–2366 (2023).
Sharif, F., Tayebi, B., Buzsáki, G., Royer, S. & Fernandez-Ruiz, A. Subcircuits of deep and superficial CA1 place cells support efficient spatial coding across heterogeneous environments. Neuron 109, 363–376 (2021).
McKenzie, S. et al. Event boundaries drive norepinephrine release and distinctive neural representations of space in the rodent hippocampus. Preprint at bioRxiv https://doi.org/10.1101/2024.07.30.605900 (2024).
Kurby, C. A. & Zacks, J. M. Segmentation in the perception and memory of events. Trends Cogn. Sci. 12, 72–79 (2008).
Gauthier, B. & van Wassenhove, V. Cognitive mapping in mental time travel and mental space navigation. Cognition 154, 55–68 (2016).
Bricke, J. Hume’s Philosophy of Mind (Princeton Univ. Press, 1980).
Nader, K. & Hardt, O. A single standard for memory: the case for reconsolidation. Nat. Rev. Neurosci. 10, 224–234 (2009).
Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).
Wittmann, M. The inner experience of time. Philos. Trans. R. Soc. J. 364, 1955–1967 (2009).
Merleau-Ponty, M. Phenomenology of Perception (Gallimard, 1945).
Coull, J. T. & Droit-Volet, S. Explicit understanding of duration develops implicitly through action. Trends Cogn. Sci. 22, 923–937 (2018).
Llinas, R. I of the Vortex. From Neurons to Self (MIT Press, 2001).
Craig, A. D. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1933–1942 (2009).
Machado, A., Malheiro, M. T. & Erlhagen, W. Learning to time: a perspective. J. Exp. Anal. Behav. 92, 423–458 (2009).
Skinner, B. F. ‘Superstition’ in the pigeon. J. Exp. Psychol. Gen. 121, 273–274 (1992).
Safaie, M. et al. Turning the body into a clock: accurate timing is facilitated by simple stereotyped interactions with the environment. Proc. Natl Acad. Sci. USA 117, 13084–13093 (2020).
van Rijn, H. Towards ecologically valid interval timing. Trends Cogn. Sci. 22, 850–852 (2018).
Hodos, W., Ross, G. S. & Brady, G. V. Complex response patterns during temporally spaced responding. J. Exp. Anal. Behav. 5, 473–479 (1962).
Richelle, M. & Lejeune, H. Time in Animal Behaviour (Pergamon, 1980).
Machado, A. Learning the temporal dynamics of behavior. Psychol. Rev. 104, 241–265 (1997).
Fernandes, A. C. & Garcia-Marques, T. The perception of time is dynamically interlocked with the facial muscle activity. Sci. Rep. 9, 18737 (2019).
Effron, D. A., Niedenthal, P. M., Gil, S. & Droit-Volet, S. Embodied temporal perception of emotion. Emotion 6, 1–9 (2006).
Schubotz, R. I. Prediction of external events with our motor system: towards a new framework. Trends Cogn. Sci. 11, 211–218 (2007).
Todd, N. P. M. Motion in music: a neurobiological perspective. Music Percept. Interdiscip. J. 17, 115–126 (1999).
Buzsáki, G. The Brain from Inside Out (Oxford Univ. Press, 2019).
Cona, G. & Semenza, C. Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci. Biobehav. Rev. 72, 28–42 (2017).
Tanji, J. & Shima, K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994).
Merchant, H. & Yarrow, K. How the motor system both encodes and influences our sense of time. Curr. Opin. Behav. Sci. 8, 22–27 (2016).
Meissner, K. & Wittmann, M. Body signals, cardiac awareness, and the perception of time. Biol. Psychol. 86, 289–297 (2011).
Garfinkel, S. N. et al. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582 (2014).
Arslanova, I., Kotsaris, V. & Tsakiris, M. Perceived time expands and contracts within each heartbeat. Curr. Biol. 33, 1389–1395 (2023).
Sadeghi, S., Wittmann, M., De Rosa, E. & Anderson, A. K. Wrinkles in subsecond time perception are synchronized to the heart. Psychophysiology 60, e14270 (2023).
Vicario, C. M., Nitsche, M. A., Salehinejad, M. A., Avanzino, L. & Martino, G. Time processing, interoception, and insula activation: a mini-review on clinical disorders. Front. Psychol. 11, 1893 (2020).
Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008).
Kononowicz, T. & Rijn, H. Single trial beta oscillations index time estimation. Neuropsychologia 75, 381–389 (2015).
Fujioka, T., Trainor, L., Large, E. & Ross, B. Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann. N. Y. Acad. Sci. 1169, 89–92 (2009).
Wiener, M., Parikh, A., Krakow, A. & Coslett, H. B. An intrinsic role of beta oscillations in memory for time estimation. Sci. Rep. 8, 7992 (2018).
Cravo, A., Rohenkohl, G., Wyart, V. & Nobre, A. Endogenous modulation of low frequency oscillations by temporal expectations. J. Neurophysiol. 106, 2964–2972 (2011).
Arnal, L., Doelling, K. & Poeppel, D. Delta–beta coupled oscillations underlie temporal prediction accuracy. Cereb. Cortex 25, 3077–3085 (2014).
Walter, W., Cooper, R., Aldridge, V., McCallum, W. & Winter, A. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203, 380–384 (1964).
Macar, F. & Vidal, F. Event-related potentials as indices of time processing: a review. J. Psychophysiol. 18, 89–104 (2004).
Casini, L. & Vidal, F. The SMAs: neural substrate of the temporal accumulator? Front. Integr. Neurosci. 5, 35 (2011).
Wittmann, M. et al. Neural substrates of time perception and impulsivity. Brain Res. 1406, 43–58 (2011).
Nieder, A. & Miller, E. K. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003).
Buhusi, C. V. & Cordes, S. Time and number: the privileged status of small values in the brain. Front. Integr. Neurosci. 5, 67 (2011).
Buzsáki, G., McKenzie, S. & Davachi, L. Neurophysiology of remembering. Annu. Rev. Psychol. 73, 187–215 (2022).
Buzsáki, G., Logothetis, N. & Singer, W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80, 751–764 (2013).
Choe, A. S. et al. Phase-locking of resting-state brain networks with the gastric basal electrical rhythm. PLoS ONE 16, e0244756 (2021).
Patel, J., Fujisawa, S., Berényi, A., Royer, S. & Buzsáki, G. Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75, 410–417 (2012).
Zhang, H. & Jacobs, J. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 12477–12487 (2015).
Buzsáki, G. & Vöröslakos, M. Brain rhythms have come of age. Neuron 111, 922–926 (2023).
Nadasdy, Z. in Analysis and Modeling of Coordinated Multi-neuronal Activity (ed. Tatsuno, M.) 269–298 (Springer, 2015).
.png)

