Time, space, memory and brain–body rhythms

2 hours ago 1
  • Bergson, H. Duration and Simultaneity: Bergson and the Einsteinian Universe (Clinamen, 1999).

  • Lashley, K. S. in Cerebral Mechanisms in Behavior (ed. Jeffress, L. A.) 112–136 (Wiley, 1951).

  • Eagleman, D. M. Brain Time (Edge Foundation, 2009).

  • Buonomano, D. Your Brain is a Time Machine: The Neuroscience and Physics of Time (W. W. Norton & Company, 2017).

  • Robbe, D. Lost in time: relocating the perception of duration outside the brain. Neurosci. Biobehav. Rev. 153, 105312 (2023).

    Article  PubMed  Google Scholar 

  • Aristotle. The Works of Aristotle Vol. 3 (trans. Beare, J. I.) (Oxford Univ. Press, 1930).

  • Wittmann, M. The inner sense of time: how the brain creates a representation of duration. Nat. Rev. Neurosci. 14, 217–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Howard, M. W. et al. A unified mathematical framework for coding time, space, and sequences in the hippocampal region. J. Neurosci. 34, 4692–4707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, J. Psychological Time in Health and Disease (Charles C. Thomas, 1967).

  • Evans, V. The Structure of Time: Language, Meaning and Temporal Cognition (John Benjamins, 2004).

  • Ornstein, R. On the Experience of Time (Penguin, 1969).

  • Michon, J. A., Jackson, J. L. & Michon, J. A. in Time, Mind and Behavior (eds Michon, J. A. & Jackson, J. L.) 21–52 (Springer, 1985).

  • O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).

  • McNaughton, B. L. et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo, M. E. & Eichenbaum, H. Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Netw. 18, 1172–1190 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal–entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Merchant, H., Harrington, D. L. & Meck, W. H. Neural basis of the perception and estimation of time. Annu. Rev. Neurosci. 36, 313–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Wittmann, M. & van Wassenhove, V. The experience of time: neural mechanisms and the interplay of emotion, cognition and embodiment. Philos. Trans. R. Soc. B 364, 1809–1813 (2009).

    Article  Google Scholar 

  • Pöppel, E. in Handbook of Sensory Physiology (eds Held, R., Leibotwitz, H. W. & Teuber, H.-L.) 713–729 (Springer, 1972).

  • Wearden, J. The Psychology of Time Perception (Palgrave Macmillan, 2016).

  • Hinchliff, M. A defense of presentism in a relativistic setting. Philos. Sci. 67, S575–S586 (2000).

    Article  Google Scholar 

  • Sider, T. Presentism and ontological commitment. J. Philos. 96, 325–347 (1999).

    Article  Google Scholar 

  • Nuñez, R. & Sweetser, E. Looking ahead to the past: convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cogn. Sci. 30, 401–450 (2006).

    Article  PubMed  Google Scholar 

  • Casasanto, D. & Boroditsky, L. Time in the mind: using space to think about time. Cognition 106, 579–593 (2008).

    Article  PubMed  Google Scholar 

  • Boroditsky, L. Metaphoric structuring: understanding time through spatial metaphors. Cognition 75, 1–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Smolin, L. Time Reborn: From the Crisis in Physics to the Future of the Universe (Houghton Mifflin Harcourt, 2013).

  • Smolin, L. Temporal naturalism. Stud. Hist. Philos. Mod. Phys. 52, 86–102 (2015).

    Article  Google Scholar 

  • Hogan, C. J. Why the universe is just so? Rev. Mod. Phys. 72, 1149 (2000).

    Article  CAS  Google Scholar 

  • Carroll, S. From Eternity to Here: The Quest for the Ultimate Theory of Time (Dutton. 2010).

  • Hicks, R. E., Miller, G. W. & Kinsbourne, M. Prospective and retrospective judgments of time as a function of amount of information processed. Am. J. Psychol. 89, 719–730 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Block, R. A. & Zakay, D. Prospective and retrospective duration judgments: a meta-analytic review. Psychon. Bull. Rev. 4, 184–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Tsao, A., Yousefzadeh, S. A., Meck, W. H., Moser, M.-B. & Moser, E. I. The neural bases for timing of durations. Nat. Rev. Neurosci. 23, 646–665 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Coull, J. T. & Nobre, A. C. Dissociating explicit timing from temporal expectation with FMRI. Curr. Opin. Neurobiol. 18, 137–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Buhusi, C. V. & Meck, W. H. What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Paton, J. J. & Buonomano, D. V. The neural basis of timing: distributed mechanisms for diverse functions. Neuron 98, 687–705 (2008).

    Article  Google Scholar 

  • Gallistel, C. R. The Organization of Action (N.J. Erlbaum, 1980).

  • Wheeler, J. A. A Journey into Gravity and Spacetime (W. H. Freeman, 1999).

  • Weyl, H. Space-Time-Matter 4th edn (Addition, Dover Publication, 1922/2013).

  • Hawking, S. W. Brief History of Time (Bantam, 1992).

  • Hall, E. T. The Dance of Life (Doubleday, 1983).

  • Walsh, V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci. 7, 483–488 (2003).

    Article  PubMed  Google Scholar 

  • Kant, I. Critique of Pure Reason (trans. Guyer, P. & Wood, A.) (Cambridge Univ. Press, 1998).

  • Piaget, J. The Child’s Conception of Time (Ballantine Books, 1927/1969).

  • Wilkening, F. Integrating velocity, time, and distance information: a developmental study. Cogn. Psychol. 13, 231–247 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Levin, I., Israeli, E. & Darom, E. The development of time concepts in young children: the relations between duration and succession. Child Dev. 49, 755–764 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Tulving, E. Elements of Episodic Memory (Oxford Univ. Press, 1983).

  • Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Aronowitz, S. Semanticization challenges the episodic–semantic distinction. Br. J. Philos. Sci. https://doi.org/10.1086/721760 (2022).

    Article  Google Scholar 

  • Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840 (2005).

    Article  PubMed  Google Scholar 

  • Tulving, E. in Organisation of Memory (eds Tulving, E. & Donaldson, W.) 381–403 (Academic, 1972).

  • Friston, K. & Buzsáki, G. The functional anatomy of time: what and when in the brain. Trends Cogn. Sci. 20, 500–511 (2016).

    Article  PubMed  Google Scholar 

  • Sarkar, A., Wang, C., Zuo, S. & Howard, M. W. ‘What’ x ‘When’ working memory representations using Laplace neural manifolds. Preprint at https://doi.org/10.48550/arXiv.2409.20484 (2024).

  • Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Patt. Anal. Mach. Intell. 35, 1798–1828 (2013).

    Article  Google Scholar 

  • Higgins, I. et al. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons. Nat. Commun. 12, 6456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D., Goodale, M. & Mansfield, R. J. W.) 549–586 (MIT Press, 1982).

  • Pallier, C., Devauchelle, A.-D. & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proc. Natl Acad. Sci. USA 108, 2522–2527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum, H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Assabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article  Google Scholar 

  • Yang, W. et al. Selection of experience for memory by hippocampal sharp wave ripples. Science 383, 1478–1483 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, H. et al. Sleep microstructure organizes memory replay. Nature 637, 1161–1169 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacikowski, P., Kalender, G., Ciliberti, D. & Fried, I. Human hippocampal and entorhinal neurons encode the temporal structure of experience. Nature 635, 160–167 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigotti M, O. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Taxidis J, E. A. et al. Differential emergence and stability of sensory and temporal representations in context-specific hippocampal sequences. Neuron 108, 984–998 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fetterman, J. G. & Killeen, P. R. Categorical scaling of time: implications for clock-counter models. J. Exp. Psychol. Anim. Behav. Process. 21, 43–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Gibbon, J. Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev. 84, 279–325 (1977).

    Article  Google Scholar 

  • Gibbon, J. & Church, R. M. Time left: linear versus logarithmic subjective timing. J. Exp. Psychol. Anim. Behav. Process. 7, 87–108 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Elliott, T. M., Christensen-Dalsgaard, J. & Kelley, D. B. Temporally selective processing of communication signals by auditory midbrain neurons. J. Neurophysiol. 105, 1620–1632 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grube, M., Cooper, F. E., Chinnery, P. F. & Griffiths, T. D. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc. Natl Acad. Sci. USA 107, 11597–11601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy, N. F. & Buonomano, D. V. Neurocomputational models of interval and pattern timing. Curr. Opin. Behav. Sci. 8, 250–257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbon, J., Malapani, C., Dale, C. L. & Gallistel, C. R. Toward a neurobiology of temporal cognition: advances and challenges. Curr. Opin. Neurobiol. 7, 170–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Gallistel, C. R. & Gibbon, J. Time, rate, and conditioning. Psychol. Rev. 107, 289–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Killeen, P. R. & Fetterman, J. G. A behavioral theory of timing. Psychol. Rev. 95, 274–295 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Matell, M. S. & Meck, W. H. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res. Cogn. Brain Res. 21, 139–170 (2004).

    Article  PubMed  Google Scholar 

  • Naghibi, N. et al. Embodying time in the brain: a multi-dimensional neuroimaging meta-analysis of duration processing studies. Neuropsychol. Rev. 34, 277–298 (2024).

    Article  PubMed  Google Scholar 

  • Mondok, C. & Wiener, M. Selectivity of timing: a meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Front. Hum. Neurosci. 16, 1000995 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wearden, J. H., Edwards, H., Fakhri, M. & Percival, A. Quart. Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. J. Exp. Psychol. 51, 97–120 (1998).

    CAS  Google Scholar 

  • van Wassenhove, V., Buonomano, D. V., Shimojo, S. & Shams, L. Distortions of subjective time perception within and across senses. PLoS ONE 3, e1437 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Staddon, J. & Higa, J. Time and memory: towards a pacemaker-free theory of interval timing. J. Exp. Anal. Behav. 71, 215–251 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Algom, D. The Weber–Fechner law: a misnomer that persists but that should go away. Psychol. Rev. 128, 757–765 (2021).

    Article  PubMed  Google Scholar 

  • Dehaene, S. The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn. Sci. 7, 145–147 (2003).

    Article  PubMed  Google Scholar 

  • Mauk, M. D. & Buonomano, D. V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Fechner, G. T. in Elements of Psychophysics [Elemente der Psychophysik] Vol. 1 (eds Howes, D. H. & Boring, E. G.) (Holt, Rinehart and Winston, 1966).

  • Hooper, S. L., Buchman, E. & Hobbs, K. H. A computational role for slow conductances: single-neuron models that measure duration. Nat. Neurosci. 5, 552–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Saitoh, I. & Suga, N. Long delay lines for ranging are created by inhibition in the inferior colliculus of the mustached bat. J. Neurophysiol. 74, 1–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Huson, V., Macosko, E. Z. & Regehr, W. G. Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells. Nat. Commun. 12, 5491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Abbott, L. R. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).

    Article  CAS  PubMed  Google Scholar 

  • English, D. F. et al. Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. Neuron 96, 505–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kojima, S. & Goldman-Rakic, P. S. Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res. 248, 43–49 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Fuster, J. M. The prefrontal cortex — an update: time is of the essence. Neuron 30, 319–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Reutimann, J., Yakovlev, V., Fusi, S. & Senn, W. Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295–3303 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durstewitz, D. Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342–5353 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen, E. B., Powers, M. E. & Moxon, K. A. Dissociating movement from movement timing in the rat primary motor cortex. J. Neurosci. 34, 15576–15586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niki, H. & Watanabe, M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 171, 213–224 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Renoult, L., Roux, S. & Riehle, A. Time is a rubberband: neural activity in monkey motor cortex in relation to time estimation. Eur. J. Neurosci. 23, 3098–3108 (2006).

    Article  PubMed  Google Scholar 

  • Tsao, A. et al. Integrating time from experience in the lateral entorhinal cortex. Nature 561, 57–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Leon, M. I. & Shadlen, M. N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mello, G. B., Soares, S. & Paton, J. J. A scalable population code for time in the striatum. Curr. Biol. 25, 1113–1122 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Gouvêa, T. S., Monteiro, T., Soares, S., Atallah, B. V. & Paton, J. J. Ongoing behavior predicts perceptual report of interval duration. Front. Neurorobot. 8, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Bueti, D. The sensory representation of time. Front. Integr. Neurosci. 5, 34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaldow, E. J., Oakley, D. A. & Davey, G. C. Performance of decorticated rats on fixed interval and fixed time schedules. Eur. J. Neurosci. 1, 461–470 (1989).

    Article  PubMed  Google Scholar 

  • Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa, S., Amarasingham, A., Harrison, M. T. & Buzsáki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 823–833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itskov, V., Curto, C., Pastalkova, E. & Buzsáki, G. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosci. 31, 2828–2834 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus, B. J., Robinson, R. J. II, White, J. A., Eichenbaum, H. & Hasselmo, M. E. Hippocampal ‘time cells’: time versus path integration. Neuron 78, 1090–1101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald, C. J., Lepag, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal ‘time cells’ bridge the gap in memory for discontiguous events. Neuron 71, 737–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum, H. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15, 732–744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mankin, E. A. et al. Neuronal code for extended time in the hippocampus. Proc. Natl Acad. Sci. USA 109, 19462–19467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldado-Magraner, S. & Buonomano, D. V. Neural sequences and the encoding of time. Adv. Exp. Med. Biol. 1455, 81–93 (2024).

    Article  PubMed  Google Scholar 

  • Zhou, S. & Buonomano, D. V. Neural population clocks: encoding time in dynamic patterns of neural activity. Behav. Neurosci. 136, 374–382 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahr, J. B. & Schacter, D. L. Episodic recombination and the role of time in mental travel. Philos. Trans. R. Soc. Lond. B Biol. Sci. 379, 20230409 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maguire, E. A. & Hassabis, D. Role of the hippocampus in imagination and future thinking. Proc. Natl Acad. Sci. USA 108, E39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Varga, V. et al. Working memory features are embedded in hippocampal place fields. Cell Rep. 43, 113807 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czurkó, A., Hirase, H., Csicsvari, J. & Buzsáki, G. Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel. Eur. J. Neurosci. 11, 344–352 (1999).

    Article  PubMed  Google Scholar 

  • Kropff, E., Carmichael, J. E., Moser, M. B. & Moser, E. I. Speed cells in the medial entorhinal cortex. Nature 523, 419–424 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Witter, M. P., Moser, M. B. & Moser, E. I. Entorhinal fast-spiking speed cells project to the hippocampus. Proc. Natl Acad. Sci. USA 115, E1627–E1636 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. & Tingley, D. Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22, 853–869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

  • Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Sun, W. et al. Learning produces an orthogonalized state machine in the hippocampus. Nature 640, 165–175 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada, S., Sakurai, Y., Nakahara, H. & Fujisawa, S. Temporal and rate coding for discrete event sequences in the hippocampus. Neuron 94, 1–15 (2017).

    Article  Google Scholar 

  • Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K. & Howard, M. W. Compressed timeline of recent experience in monkey lPFC. J. Cogn. Neurosci. 30, 935–950 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittington, J. C. R. et al. The Tolman–Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton, A. A. Remapping revisited: how the hippocampus represents different spaces. Nat. Rev. Neurosci. 25, 428–448 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Umbach, G. et al. Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proc. Natl Acad. Sci. USA 117, 28463–28474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski, D. Context-dependence and context-invariance in the neural coding of intentional action. Front. Psychol. 9, 2310 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, B. M., van Rijn, H. & Meck, W. H. Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci. Biobehav. Rev. 48, 160–185 (2015).

    Article  PubMed  Google Scholar 

  • van Rijn, H. Accounting for memory mechanisms in interval timing: a review. Curr. Opin. Behav. Sci. 8, 245–249 (2016).

    Article  Google Scholar 

  • Grabot, L. et al. The strength of alpha–beta oscillatory coupling predicts motor timing precision. J. Neurosci. 39, 3277–3291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wassenhove, V. Temporal cognition and neural oscillations. Curr. Opin. Behav. Sci. 8, 124–130 (2016).

    Article  Google Scholar 

  • Kononowicz, T. W., Roger, C. & van Wassenhove, V. Temporal metacognition as the decoding of self-generated brain dynamics. Cereb. Cortex 29, 4366–4380 (2019).

    Article  PubMed  Google Scholar 

  • Azizi, L., Polti, I. & van Wassenhove, V. Spontaneous α brain dynamics track the episodic ‘when’. J. Neurosci. 43, 7186–7197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthi, R. & Vanrullen, R. Conscious updating is a rhythmic process. Proc. Natl Acad. Sci. USA 109, 10599–10604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pöppel, E. Oscillations as a possible basis for time perception. Stud. Gen. 24, 85–107 (1971).

    Google Scholar 

  • Pöppel, E. A hierarchical model of temporal perception. Trends Cogn. Sci. 1, 56–61 (1997).

    Article  PubMed  Google Scholar 

  • Miall, R. C. The storage of time intervals using oscillating neurons. Neural Comput. 1, 359–371 (1989).

    Article  Google Scholar 

  • Brown, G. D. A., Preece, T. & Hulme, C. Oscillator-based memory for serial order. Psychol. Rev. 107, 127–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tse, P. U., Intriligator, J., Rivest, J. & Cavanaugh, P. Attention and the subjective expansion of time. Percept. Psychophys. 66, 1171–1189 (2004).

    Article  PubMed  Google Scholar 

  • Bar-Haim, Y., Kerem, A., Lamy, D. & Zakay, D. When time slows down: the influence of threat on time perception in anxiety. Cogn. Emot. 24, 255–263 (2010).

    Article  Google Scholar 

  • Gil, S. & Droit-Volet, S. Time perception, depression and sadness. Behav. Process 80, 169–176 (2009).

    Article  Google Scholar 

  • Matthews, W. J. & Meck, W. H. Time perception: the bad news and the good. Wiley Interdiscip. Rev. Cogn. Sci. 5, 429–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  PubMed  Google Scholar 

  • Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065–2069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269 (2007).

    Article  PubMed  Google Scholar 

  • Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, M. X. Multivariate cross-frequency coupling via generalized eigendecomposition. eLife 6, e21792 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tingley, D., McClain, K., Kaya, E., Carpenter, J. & Buzsáki, G. A metabolic function of the hippocampal sharp wave-ripple. Nature 597, 82–86 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, B. O., Levenstein, D., Greene, J. P., Gelinas, J. N. & Buzsáki, G. Network homeostasis and state dynamics of neocortical sleep. Neuron 90, 839–852 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzano, M. G. et al. The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8, 137–145 (1985).

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A., Nestvogel, D. B. & He, B. J. Neuromodulation of brain state and behavior. Annu. Rev. Neurosci. 8, 391–415 (2020).

    Article  Google Scholar 

  • McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen, L. et al. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848–851 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Richter, C. G., Babo-Rebelo, M., Schwartz, D. & Tallon-Baudry, C. Phase–amplitude coupling at the organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. NeuroImage 146, 951–958 (2017).

    Article  PubMed  Google Scholar 

  • Penttonen, M. et al. Ultra-slow oscillation (0.025 Hz) triggers hippocampal after discharges in Wistar rats. Neuroscience 94, 735–743 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lüthi, A. & Nedergaard, M. Anything but small: microarousals stand at the crossroad between noradrenaline signaling and key sleep functions. Neuron 113, 509–523 (2025).

    Article  PubMed  Google Scholar 

  • Sanders, K. M., Koh, S. D., Ro, S. & Ward, S. M. Regulation of gastrointestinal motility — insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9, 633–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson, R. A. et al. Topography of putative bi-directional interaction between hippocampal sharp-wave ripples and neocortical slow oscillations. Neuron 113, 754–768 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, E. et al. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science 375, 994–1000 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 112, 1862–1875 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio-Forero, A. et al. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM–REM sleep cycle. Nat. Neurosci. 28, 84–96 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Krok, A. C. et al. Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature 621, 543–549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledberg, A. & Robbe, D. Locomotion-related oscillatory body movements at 6–12 Hz modulate the hippocampal theta rhythm. PLoS ONE 6, e27575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karalis, N. & Sirota, A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat. Commun. 13, 467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi, A. et al. Dynamic synchronization between hippocampal representations and stepping. Nature 617, 125–131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tort, A. B. L., Laplagne, D. A., Draguhn, A. & Gonzalez, J. Global coordination of brain activity by the breathing cycle. Nat. Rev. Neurosci. 26, 333–353 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., Jiang, X., Chen, J., Zhang, C. & Wang, L. Oscillatory control over representational geometry of sequence working memory in macaque frontal cortex. Curr. Biol. 35, 1495–1507 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Fries, P., Schröder, J.-H., Roelfsema, P. R., Singer, W. & Engel, A. K. Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22, 3739–3754 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melloni, L. et al. Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe, O., Shapiro, K. & Staresina, B. P. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr. Biol. 32, 2121–2129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpee, T. O. An argument for hyperbolic geometry in neural circuits. Curr. Opin. Neurobiol. 58, 101–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  PubMed  Google Scholar 

  • Geisler, C., Robbe, D., Zugaro, M., Sirota, A. & Buzsáki, G. Hippocampal place cell assemblies are speed-controlled oscillators. Proc. Natl Acad. Sci. USA 104, 8149–8154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Failing, M. & Theeuwes, J. Reward alters the perception of time. Cognition 148, 19–26 (2016).

    Article  PubMed  Google Scholar 

  • Falk, J. L. & Bindra, D. Judgment of time as a function of serial position and stress. J. Exp. Psychol. 47, 279–282 (1954).

    Article  CAS  PubMed  Google Scholar 

  • Gable, P. A. & Poole, B. D. Time flies when you’re having approach-motivated fun. Psychol. Sci. 23, 879–886 (2012).

    Article  PubMed  Google Scholar 

  • Droit-Volet, S., Fayolle, S. L. & Gil, S. Emotion and time perception: effects of film-induced mood. Front. Integr. Neurosci. 5, 33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell, L. A. & Bryant, R. A. How time flies: a study of novice skydivers. Behav. Res. Ther. 45, 1389–1392 (2006).

    Article  PubMed  Google Scholar 

  • Fung, B. J., Sutlief, E. & Hussain Shuler, M. G. Dopamine and the interdependency of time perception and reward. Neurosci. Biobehav. Rev. 125, 380–391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meck, W. H. Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 1109, 93–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Drew, M. R. et al. Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J. Neurosci. 27, 7731–7739 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons control judgment of time. Science 354, 1273–1277 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Pastor, M. A., Artieda, J., Jahanshahi, M. & Obeso, J. A. Time estimation and reproduction is abnormal in Parkinson’s disease. Brain 115, 211–225 (1992).

    Article  PubMed  Google Scholar 

  • Riesen, J. M. & Schnider, A. Time estimation in Parkinson’s disease: normal long duration estimation despite impaired short duration discrimination. J. Neurol. 248, 27–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M. & Jahanshahi, M. Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn. 68, 30–41 (2008).

    Article  PubMed  Google Scholar 

  • van Maanen, L. et al. Core body temperature speeds up temporal processing and choice behavior under deadlines. Sci. Rep. 9, 10053 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wearden, J. H. & Penton-Voak, I. S. Feeling the heat: body temperature and the rate of subjective time, revisited. Q. J. Exp. Psychol. B 48, 129–141 (1995).

    CAS  PubMed  Google Scholar 

  • Long, M. A., Jin, D. Z. & Fee, M. S. Support for a synaptic chain model of neuronal sequence generation. Nature 468, 394–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, P. C. & Buzsáki, G. Cooling of medial septum reveals theta phase lag coordination of hippocampal cell assemblies. Neuron 107, 731–744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, P. & Moser, E. I. Brain temperature and hippocampal function. Hippocampus 5, 491–498 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Wittmann, M., Leland, D. S., Churan, J. & Paulus, M. P. Impaired time perception and motor timing in stimulant dependent subjects. Drug Alcohol Depend. 90, 183–192 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Meck, W. H. & Church, R. M. Cholinergic modulation of the content of temporal memory. Behav. Neurosci. 101, 457–464 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Chubykin, A. A., Roach, E. B., Bear, M. F. & Shuler, M. G. H. A cholinergic mechanism for reward timing within primary visual cortex. Neuron 77, 723–735 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuyens, F. M., Billieux, J. & Maurage, P. Time perception and alcohol use: a systematic review. Neurosci. Biobehav. Rev. 127, 377–403 (2021).

    Article  PubMed  Google Scholar 

  • Atakan, Z., Morrison, P., Bossong, M. G., Martin-Santos, R. & Crippa, J. A. The effect of cannabis on perception of time: a critical review. Curr. Pharm. Des. 18, 4915–4922 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandecasteele, M. et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc. Natl Acad. Sci. USA 111, 13535–13540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyrache, A., Lacroix, M. M., Petersen, P. C. & Buzsáki, G. Internally organized mechanisms of the head direction sense. Nat. Neurosci. 18, 569–575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele, A. & Bellgrove, M. A. Neuromodulation of attention. Neuron 97, 769–785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuiston, A. R. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1. Front. Synaptic Neurosci. 6, 20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Varela, F. J. in Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science (eds Petitot, J. et al.) 266–329 (Stanford Univ. Press, 1999).

  • Brown, S. W. & Stubbs, D. A. Attention and interference in prospective and retrospective timing. Perception 21, 545–557 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Brietzke, S. & Meyer, M. L. Temporal self-compression: behavioral and neural evidence that past and future selves are compressed as they move away from the present. Proc. Natl Acad. Sci. USA 118, e2101403118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin, S., Bisson, N. & Grondin, S. An ecological approach to prospective and retrospective timing of long durations: a study involving gamers. PLoS ONE 5, e9271 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Block, R. A., Hancock, P. A. & Zakay, D. How cognitive load affects duration judgments: a meta-analytic review. Acta Psychol. 134, 330–343 (2010).

    Article  Google Scholar 

  • Arzy, S., Adi-Japha, E. & Blanke, O. The mental time line: an analogue of the mental number line in the mapping of life events. Conscious. Cogn. 18, 781–785 (2009).

    Article  PubMed  Google Scholar 

  • Arzy, S., Collette, S., Ionta, S., Fornari, E. & Blanke, O. Subjective mental time: the functional architecture of projecting the self to past and future. Eur. J. Neurosci. 30, 2009–2017 (2009).

    Article  PubMed  Google Scholar 

  • Polti, I., Martin, B. & van Wassenhove, V. The effect of attention and working memory on the estimation of elapsed time. Sci. Rep. 8, 6690 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, D. T. & Wilson, T. D. Prospection: experiencing the future. Science 317, 1351–1354 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wearden, J. H. & Ferrara, A. Subjective shortening in humans’ memory for stimulus duration. Q. J. Exp. Psychol. B 46, 163–186 (1993).

    CAS  PubMed  Google Scholar 

  • Coull, J. T., Cotti, J. & Vidal, F. Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: dissociating prior from posterior temporal probabilities with fMRI. NeuroImage 141, 40–51 (2016).

    Article  PubMed  Google Scholar 

  • Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R. S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Baddeley, A. Working memory. Science 255, 556–559 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Clewett, D., DuBrow, S. & Davachi, L. Transcending time in the brain: how event memories are constructed from experience. Hippocampus 29, 162–183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Morin, C., Brown, G. D. & Lewandowsky, S. Temporal isolation effects in recognition and serial recall. Mem. Cogn. 38, 849–859 (2010).

    Article  Google Scholar 

  • Ezzyat, Y. & Davachi, L. Similarity breeds proximity: pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron 81, 1179–1189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren, M. & Frankel, M. Are You Thinking Clearly? 29 Reasons You Aren’t, and What to do About it (Coronet Books, 2024).

  • Geva, N., Deitch, D., Rubin, A. & Ziv, Y. Time and experience differentially affect distinct aspects of hippocampal representational drift. Neuron 111, 2357–2366 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Sharif, F., Tayebi, B., Buzsáki, G., Royer, S. & Fernandez-Ruiz, A. Subcircuits of deep and superficial CA1 place cells support efficient spatial coding across heterogeneous environments. Neuron 109, 363–376 (2021).

    Article  CAS  PubMed  Google Scholar 

  • McKenzie, S. et al. Event boundaries drive norepinephrine release and distinctive neural representations of space in the rodent hippocampus. Preprint at bioRxiv https://doi.org/10.1101/2024.07.30.605900 (2024).

  • Kurby, C. A. & Zacks, J. M. Segmentation in the perception and memory of events. Trends Cogn. Sci. 12, 72–79 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauthier, B. & van Wassenhove, V. Cognitive mapping in mental time travel and mental space navigation. Cognition 154, 55–68 (2016).

    Article  PubMed  Google Scholar 

  • Bricke, J. Hume’s Philosophy of Mind (Princeton Univ. Press, 1980).

  • Nader, K. & Hardt, O. A single standard for memory: the case for reconsolidation. Nat. Rev. Neurosci. 10, 224–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann, M. The inner experience of time. Philos. Trans. R. Soc. J. 364, 1955–1967 (2009).

    Article  Google Scholar 

  • Merleau-Ponty, M. Phenomenology of Perception (Gallimard, 1945).

  • Coull, J. T. & Droit-Volet, S. Explicit understanding of duration develops implicitly through action. Trends Cogn. Sci. 22, 923–937 (2018).

    Article  PubMed  Google Scholar 

  • Llinas, R. I of the Vortex. From Neurons to Self (MIT Press, 2001).

  • Craig, A. D. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1933–1942 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado, A., Malheiro, M. T. & Erlhagen, W. Learning to time: a perspective. J. Exp. Anal. Behav. 92, 423–458 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner, B. F. ‘Superstition’ in the pigeon. J. Exp. Psychol. Gen. 121, 273–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Safaie, M. et al. Turning the body into a clock: accurate timing is facilitated by simple stereotyped interactions with the environment. Proc. Natl Acad. Sci. USA 117, 13084–13093 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rijn, H. Towards ecologically valid interval timing. Trends Cogn. Sci. 22, 850–852 (2018).

    Article  PubMed  Google Scholar 

  • Hodos, W., Ross, G. S. & Brady, G. V. Complex response patterns during temporally spaced responding. J. Exp. Anal. Behav. 5, 473–479 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richelle, M. & Lejeune, H. Time in Animal Behaviour (Pergamon, 1980).

  • Machado, A. Learning the temporal dynamics of behavior. Psychol. Rev. 104, 241–265 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, A. C. & Garcia-Marques, T. The perception of time is dynamically interlocked with the facial muscle activity. Sci. Rep. 9, 18737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effron, D. A., Niedenthal, P. M., Gil, S. & Droit-Volet, S. Embodied temporal perception of emotion. Emotion 6, 1–9 (2006).

    Article  PubMed  Google Scholar 

  • Schubotz, R. I. Prediction of external events with our motor system: towards a new framework. Trends Cogn. Sci. 11, 211–218 (2007).

    Article  PubMed  Google Scholar 

  • Todd, N. P. M. Motion in music: a neurobiological perspective. Music Percept. Interdiscip. J. 17, 115–126 (1999).

    Article  Google Scholar 

  • Buzsáki, G. The Brain from Inside Out (Oxford Univ. Press, 2019).

  • Cona, G. & Semenza, C. Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci. Biobehav. Rev. 72, 28–42 (2017).

    Article  PubMed  Google Scholar 

  • Tanji, J. & Shima, K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Merchant, H. & Yarrow, K. How the motor system both encodes and influences our sense of time. Curr. Opin. Behav. Sci. 8, 22–27 (2016).

    Article  Google Scholar 

  • Meissner, K. & Wittmann, M. Body signals, cardiac awareness, and the perception of time. Biol. Psychol. 86, 289–297 (2011).

    Article  PubMed  Google Scholar 

  • Garfinkel, S. N. et al. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arslanova, I., Kotsaris, V. & Tsakiris, M. Perceived time expands and contracts within each heartbeat. Curr. Biol. 33, 1389–1395 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi, S., Wittmann, M., De Rosa, E. & Anderson, A. K. Wrinkles in subsecond time perception are synchronized to the heart. Psychophysiology 60, e14270 (2023).

    Article  PubMed  Google Scholar 

  • Vicario, C. M., Nitsche, M. A., Salehinejad, M. A., Avanzino, L. & Martino, G. Time processing, interoception, and insula activation: a mini-review on clinical disorders. Front. Psychol. 11, 1893 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008).

    Article  PubMed  Google Scholar 

  • Kononowicz, T. & Rijn, H. Single trial beta oscillations index time estimation. Neuropsychologia 75, 381–389 (2015).

    Article  PubMed  Google Scholar 

  • Fujioka, T., Trainor, L., Large, E. & Ross, B. Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann. N. Y. Acad. Sci. 1169, 89–92 (2009).

    Article  PubMed  Google Scholar 

  • Wiener, M., Parikh, A., Krakow, A. & Coslett, H. B. An intrinsic role of beta oscillations in memory for time estimation. Sci. Rep. 8, 7992 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cravo, A., Rohenkohl, G., Wyart, V. & Nobre, A. Endogenous modulation of low frequency oscillations by temporal expectations. J. Neurophysiol. 106, 2964–2972 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnal, L., Doelling, K. & Poeppel, D. Delta–beta coupled oscillations underlie temporal prediction accuracy. Cereb. Cortex 25, 3077–3085 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter, W., Cooper, R., Aldridge, V., McCallum, W. & Winter, A. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203, 380–384 (1964).

    Article  CAS  PubMed  Google Scholar 

  • Macar, F. & Vidal, F. Event-related potentials as indices of time processing: a review. J. Psychophysiol. 18, 89–104 (2004).

    Article  Google Scholar 

  • Casini, L. & Vidal, F. The SMAs: neural substrate of the temporal accumulator? Front. Integr. Neurosci. 5, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittmann, M. et al. Neural substrates of time perception and impulsivity. Brain Res. 1406, 43–58 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieder, A. & Miller, E. K. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Buhusi, C. V. & Cordes, S. Time and number: the privileged status of small values in the brain. Front. Integr. Neurosci. 5, 67 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G., McKenzie, S. & Davachi, L. Neurophysiology of remembering. Annu. Rev. Psychol. 73, 187–215 (2022).

    Article  PubMed  Google Scholar 

  • Buzsáki, G., Logothetis, N. & Singer, W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80, 751–764 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Choe, A. S. et al. Phase-locking of resting-state brain networks with the gastric basal electrical rhythm. PLoS ONE 16, e0244756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, J., Fujisawa, S., Berényi, A., Royer, S. & Buzsáki, G. Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75, 410–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. & Jacobs, J. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 12477–12487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. & Vöröslakos, M. Brain rhythms have come of age. Neuron 111, 922–926 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadasdy, Z. in Analysis and Modeling of Coordinated Multi-neuronal Activity (ed. Tatsuno, M.) 269–298 (Springer, 2015).

  • Read Entire Article