Turn Docs, Code and PDFs into Claude AI Skills in Minutes

4 hours ago 1

MseeP.ai Security Assessment Badge

Version  MIT Python 3.10+ MCP Integration Tested Project Board

Automatically convert documentation websites, GitHub repositories, and PDFs into Claude AI skills in minutes.

📋 View Development Roadmap & Tasks - 134 tasks across 10 categories, pick any to contribute!

Skill Seeker is an automated tool that transforms documentation websites, GitHub repositories, and PDF files into production-ready Claude AI skills. Instead of manually reading and summarizing documentation, Skill Seeker:

  1. Scrapes multiple sources (docs, GitHub repos, PDFs) automatically
  2. Analyzes code repositories with deep AST parsing
  3. Detects conflicts between documentation and code implementation
  4. Organizes content into categorized reference files
  5. Enhances with AI to extract best examples and key concepts
  6. Packages everything into an uploadable .zip file for Claude

Result: Get comprehensive Claude skills for any framework, API, or tool in 20-40 minutes instead of hours of manual work.

  • 🎯 For Developers: Create skills from documentation + GitHub repos with conflict detection
  • 🎮 For Game Devs: Generate skills for game engines (Godot docs + GitHub, Unity, etc.)
  • 🔧 For Teams: Combine internal docs + code repositories into single source of truth
  • 📚 For Learners: Build comprehensive skills from docs, code examples, and PDFs
  • 🔍 For Open Source: Analyze repos to find documentation gaps and outdated examples
  • llms.txt Support - Automatically detects and uses LLM-ready documentation files (10x faster)
  • Universal Scraper - Works with ANY documentation website
  • Smart Categorization - Automatically organizes content by topic
  • Code Language Detection - Recognizes Python, JavaScript, C++, GDScript, etc.
  • 8 Ready-to-Use Presets - Godot, React, Vue, Django, FastAPI, and more
  • Basic PDF Extraction - Extract text, code, and images from PDF files
  • OCR for Scanned PDFs - Extract text from scanned documents
  • Password-Protected PDFs - Handle encrypted PDFs
  • Table Extraction - Extract complex tables from PDFs
  • Parallel Processing - 3x faster for large PDFs
  • Intelligent Caching - 50% faster on re-runs

🐙 GitHub Repository Scraping (v2.0.0)

  • Deep Code Analysis - AST parsing for Python, JavaScript, TypeScript, Java, C++, Go
  • API Extraction - Functions, classes, methods with parameters and types
  • Repository Metadata - README, file tree, language breakdown, stars/forks
  • GitHub Issues & PRs - Fetch open/closed issues with labels and milestones
  • CHANGELOG & Releases - Automatically extract version history
  • Conflict Detection - Compare documented APIs vs actual code implementation
  • MCP Integration - Natural language: "Scrape GitHub repo facebook/react"

🔄 Unified Multi-Source Scraping (NEW - v2.0.0)

  • Combine Multiple Sources - Mix documentation + GitHub + PDF in one skill
  • Conflict Detection - Automatically finds discrepancies between docs and code
  • Intelligent Merging - Rule-based or AI-powered conflict resolution
  • Transparent Reporting - Side-by-side comparison with ⚠️ warnings
  • Documentation Gap Analysis - Identifies outdated docs and undocumented features
  • Single Source of Truth - One skill showing both intent (docs) and reality (code)
  • Backward Compatible - Legacy single-source configs still work
  • AI-Powered Enhancement - Transforms basic templates into comprehensive guides
  • No API Costs - FREE local enhancement using Claude Code Max
  • MCP Server for Claude Code - Use directly from Claude Code with natural language
  • Async Mode - 2-3x faster scraping with async/await (use --async flag)
  • Large Documentation Support - Handle 10K-40K+ page docs with intelligent splitting
  • Router/Hub Skills - Intelligent routing to specialized sub-skills
  • Parallel Scraping - Process multiple skills simultaneously
  • Checkpoint/Resume - Never lose progress on long scrapes
  • Caching System - Scrape once, rebuild instantly
  • Fully Tested - 299 tests with 100% pass rate

Option 1: Use from Claude Code (Recommended)

# One-time setup (5 minutes) ./setup_mcp.sh # Then in Claude Code, just ask: "Generate a React skill from https://react.dev/" "Scrape PDF at docs/manual.pdf and create skill"

Time: Automated | Quality: Production-ready | Cost: Free

Option 2: Use CLI Directly (HTML Docs)

# Install dependencies (2 pip packages) pip3 install requests beautifulsoup4 # Generate a React skill in one command python3 cli/doc_scraper.py --config configs/react.json --enhance-local # Upload output/react.zip to Claude - Done!

Time: ~25 minutes | Quality: Production-ready | Cost: Free

Option 3: Use CLI for PDF Documentation

# Install PDF support pip3 install PyMuPDF # Basic PDF extraction python3 cli/pdf_scraper.py --pdf docs/manual.pdf --name myskill # Advanced features python3 cli/pdf_scraper.py --pdf docs/manual.pdf --name myskill \ --extract-tables \ # Extract tables --parallel \ # Fast parallel processing --workers 8 # Use 8 CPU cores # Scanned PDFs (requires: pip install pytesseract Pillow) python3 cli/pdf_scraper.py --pdf docs/scanned.pdf --name myskill --ocr # Password-protected PDFs python3 cli/pdf_scraper.py --pdf docs/encrypted.pdf --name myskill --password mypassword # Upload output/myskill.zip to Claude - Done!

Time: ~5-15 minutes (or 2-5 minutes with parallel) | Quality: Production-ready | Cost: Free

Advanced Features:

  • ✅ OCR for scanned PDFs (requires pytesseract)
  • ✅ Password-protected PDF support
  • ✅ Table extraction
  • ✅ Parallel processing (3x faster)
  • ✅ Intelligent caching

Option 4: Use CLI for GitHub Repository

# Install GitHub support pip3 install PyGithub # Basic repository scraping python3 cli/github_scraper.py --repo facebook/react # Using a config file python3 cli/github_scraper.py --config configs/react_github.json # With authentication (higher rate limits) export GITHUB_TOKEN=ghp_your_token_here python3 cli/github_scraper.py --repo facebook/react # Customize what to include python3 cli/github_scraper.py --repo django/django \ --include-issues \ # Extract GitHub Issues --max-issues 100 \ # Limit issue count --include-changelog \ # Extract CHANGELOG.md --include-releases # Extract GitHub Releases # MCP usage in Claude Code "Scrape GitHub repository facebook/react" # Upload output/react.zip to Claude - Done!

Time: ~5-10 minutes | Quality: Production-ready | Cost: Free

What Gets Extracted:

  • ✅ README.md and documentation files
  • ✅ GitHub Issues (open/closed, labels, milestones)
  • ✅ CHANGELOG.md and version history
  • ✅ GitHub Releases with release notes
  • ✅ Repository metadata (stars, language, topics)
  • ✅ File structure and language breakdown

Option 5: Unified Multi-Source Scraping (NEW - v2.0.0)

The Problem: Documentation and code often drift apart. Docs might be outdated, missing features that exist in code, or documenting features that were removed.

The Solution: Combine documentation + GitHub + PDF into one unified skill that shows BOTH what's documented AND what actually exists, with clear warnings about discrepancies.

# Create unified config (mix documentation + GitHub) cat > configs/myframework_unified.json << 'EOF' { "name": "myframework", "description": "Complete framework knowledge from docs + code", "merge_mode": "rule-based", "sources": [ { "type": "documentation", "base_url": "https://docs.myframework.com/", "extract_api": true, "max_pages": 200 }, { "type": "github", "repo": "owner/myframework", "include_code": true, "code_analysis_depth": "surface" } ] } EOF # Run unified scraper python3 cli/unified_scraper.py --config configs/myframework_unified.json # Upload output/myframework.zip to Claude - Done!

Time: ~30-45 minutes | Quality: Production-ready with conflict detection | Cost: Free

What Makes It Special:

Conflict Detection - Automatically finds 4 types of discrepancies:

  • 🔴 Missing in code (high): Documented but not implemented
  • 🟡 Missing in docs (medium): Implemented but not documented
  • ⚠️ Signature mismatch: Different parameters/types
  • ℹ️ Description mismatch: Different explanations

Transparent Reporting - Shows both versions side-by-side:

#### `move_local_x(delta: float)` ⚠️ **Conflict**: Documentation signature differs from implementation **Documentation says:**

def move_local_x(delta: float)

**Code implementation:** ```python def move_local_x(delta: float, snap: bool = False) -> None
✅ **Advantages:** - **Identifies documentation gaps** - Find outdated or missing docs automatically - **Catches code changes** - Know when APIs change without docs being updated - **Single source of truth** - One skill showing intent (docs) AND reality (code) - **Actionable insights** - Get suggestions for fixing each conflict - **Development aid** - See what's actually in the codebase vs what's documented **Example Unified Configs:** - `configs/react_unified.json` - React docs + GitHub repo - `configs/django_unified.json` - Django docs + GitHub repo - `configs/fastapi_unified.json` - FastAPI docs + GitHub repo **Full Guide:** See [docs/UNIFIED_SCRAPING.md](docs/UNIFIED_SCRAPING.md) for complete documentation. ## How It Works ```mermaid graph LR A[Documentation Website] --> B[Skill Seeker] B --> C[Scraper] B --> D[AI Enhancement] B --> E[Packager] C --> F[Organized References] D --> F F --> E E --> G[Claude Skill .zip] G --> H[Upload to Claude AI]
  1. Detect llms.txt - Checks for llms-full.txt, llms.txt, llms-small.txt first
  2. Scrape: Extracts all pages from documentation
  3. Categorize: Organizes content into topics (API, guides, tutorials, etc.)
  4. Enhance: AI analyzes docs and creates comprehensive SKILL.md with examples
  5. Package: Bundles everything into a Claude-ready .zip file

Before you start, make sure you have:

  1. Python 3.10 or higher - Download | Check: python3 --version
  2. Git - Download | Check: git --version
  3. 15-30 minutes for first-time setup

First time user?Start Here: Bulletproof Quick Start Guide 🎯

This guide walks you through EVERYTHING step-by-step (Python install, git clone, first skill creation).


Method 1: MCP Server for Claude Code (Easiest)

Use Skill Seeker directly from Claude Code with natural language!

# Clone repository git clone https://github.com/yusufkaraaslan/Skill_Seekers.git cd Skill_Seekers # One-time setup (5 minutes) ./setup_mcp.sh # Restart Claude Code, then just ask:

In Claude Code:

List all available configs Generate config for Tailwind at https://tailwindcss.com/docs Scrape docs using configs/react.json Package skill at output/react/

Benefits:

  • ✅ No manual CLI commands
  • ✅ Natural language interface
  • ✅ Integrated with your workflow
  • ✅ 9 tools available instantly (includes automatic upload!)
  • Tested and working in production

Full guides:

Method 2: CLI (Traditional)

One-Time Setup: Create Virtual Environment

# Clone repository git clone https://github.com/yusufkaraaslan/Skill_Seekers.git cd Skill_Seekers # Create virtual environment python3 -m venv venv # Activate virtual environment source venv/bin/activate # macOS/Linux # OR on Windows: venv\Scripts\activate # Install dependencies pip install requests beautifulsoup4 pytest # Save dependencies pip freeze > requirements.txt # Optional: Install anthropic for API-based enhancement (not needed for LOCAL enhancement) # pip install anthropic

Always activate the virtual environment before using Skill Seeker:

source venv/bin/activate # Run this each time you start a new terminal session
# Make sure venv is activated (you should see (venv) in your prompt) source venv/bin/activate # Optional: Estimate pages first (fast, 1-2 minutes) python3 cli/estimate_pages.py configs/godot.json # Use Godot preset python3 cli/doc_scraper.py --config configs/godot.json # Use React preset python3 cli/doc_scraper.py --config configs/react.json # See all presets ls configs/
python3 cli/doc_scraper.py --interactive
python3 cli/doc_scraper.py \ --name react \ --url https://react.dev/ \ --description "React framework for UIs"

📤 Uploading Skills to Claude

Once your skill is packaged, you need to upload it to Claude:

Option 1: Automatic Upload (API-based)

# Set your API key (one-time) export ANTHROPIC_API_KEY=sk-ant-... # Package and upload automatically python3 cli/package_skill.py output/react/ --upload # OR upload existing .zip python3 cli/upload_skill.py output/react.zip

Benefits:

  • ✅ Fully automatic
  • ✅ No manual steps
  • ✅ Works from command line

Requirements:

Option 2: Manual Upload (No API Key)

# Package skill python3 cli/package_skill.py output/react/ # This will: # 1. Create output/react.zip # 2. Open the output/ folder automatically # 3. Show upload instructions # Then manually upload: # - Go to https://claude.ai/skills # - Click "Upload Skill" # - Select output/react.zip # - Done!

Benefits:

  • ✅ No API key needed
  • ✅ Works for everyone
  • ✅ Folder opens automatically

Option 3: Claude Code (MCP) - Smart & Automatic

In Claude Code, just ask: "Package and upload the React skill" # With API key set: # - Packages the skill # - Uploads to Claude automatically # - Done! ✅ # Without API key: # - Packages the skill # - Shows where to find the .zip # - Provides manual upload instructions

Benefits:

  • ✅ Natural language
  • ✅ Smart auto-detection (uploads if API key available)
  • ✅ Works with or without API key
  • ✅ No errors or failures

doc-to-skill/ ├── cli/ │ ├── doc_scraper.py # Main scraping tool │ ├── package_skill.py # Package to .zip │ ├── upload_skill.py # Auto-upload (API) │ └── enhance_skill.py # AI enhancement ├── mcp/ # MCP server for Claude Code │ └── server.py # 9 MCP tools ├── configs/ # Preset configurations │ ├── godot.json # Godot Engine │ ├── react.json # React │ ├── vue.json # Vue.js │ ├── django.json # Django │ └── fastapi.json # FastAPI └── output/ # All output (auto-created) ├── godot_data/ # Scraped data ├── godot/ # Built skill └── godot.zip # Packaged skill

1. Fast Page Estimation (NEW!)

python3 cli/estimate_pages.py configs/react.json # Output: 📊 ESTIMATION RESULTS ✅ Pages Discovered: 180 📈 Estimated Total: 230 ⏱️ Time Elapsed: 1.2 minutes 💡 Recommended max_pages: 280

Benefits:

  • Know page count BEFORE scraping (saves time)
  • Validates URL patterns work correctly
  • Estimates total scraping time
  • Recommends optimal max_pages setting
  • Fast (1-2 minutes vs 20-40 minutes full scrape)

2. Auto-Detect Existing Data

python3 cli/doc_scraper.py --config configs/godot.json # If data exists: ✓ Found existing data: 245 pages Use existing data? (y/n): y ⏭️ Skipping scrape, using existing data

Automatic pattern extraction:

  • Extracts common code patterns from docs
  • Detects programming language
  • Creates quick reference with real examples
  • Smarter categorization with scoring

Enhanced SKILL.md:

  • Real code examples from documentation
  • Language-annotated code blocks
  • Common patterns section
  • Quick reference from actual usage examples

Automatically infers categories from:

  • URL structure
  • Page titles
  • Content keywords
  • With scoring for better accuracy

5. Code Language Detection

# Automatically detects: - Python (def, import, from) - JavaScript (const, let, =>) - GDScript (func, var, extends) - C++ (#include, int main) - And more...
# Scrape once python3 cli/doc_scraper.py --config configs/react.json # Later, just rebuild (instant) python3 cli/doc_scraper.py --config configs/react.json --skip-scrape

6. Async Mode for Faster Scraping (2-3x Speed!)

# Enable async mode with 8 workers (recommended for large docs) python3 cli/doc_scraper.py --config configs/react.json --async --workers 8 # Small docs (~100-500 pages) python3 cli/doc_scraper.py --config configs/mydocs.json --async --workers 4 # Large docs (2000+ pages) with no rate limiting python3 cli/doc_scraper.py --config configs/largedocs.json --async --workers 8 --no-rate-limit

Performance Comparison:

  • Sync mode (threads): ~18 pages/sec, 120 MB memory
  • Async mode: ~55 pages/sec, 40 MB memory
  • Result: 3x faster, 66% less memory!

When to use:

  • ✅ Large documentation (500+ pages)
  • ✅ Network latency is high
  • ✅ Memory is constrained
  • ❌ Small docs (< 100 pages) - overhead not worth it

See full guide: ASYNC_SUPPORT.md

7. AI-Powered SKILL.md Enhancement

# Option 1: During scraping (API-based, requires API key) pip3 install anthropic export ANTHROPIC_API_KEY=sk-ant-... python3 cli/doc_scraper.py --config configs/react.json --enhance # Option 2: During scraping (LOCAL, no API key - uses Claude Code Max) python3 cli/doc_scraper.py --config configs/react.json --enhance-local # Option 3: After scraping (API-based, standalone) python3 cli/enhance_skill.py output/react/ # Option 4: After scraping (LOCAL, no API key, standalone) python3 cli/enhance_skill_local.py output/react/

What it does:

  • Reads your reference documentation
  • Uses Claude to generate an excellent SKILL.md
  • Extracts best code examples (5-10 practical examples)
  • Creates comprehensive quick reference
  • Adds domain-specific key concepts
  • Provides navigation guidance for different skill levels
  • Automatically backs up original
  • Quality: Transforms 75-line templates into 500+ line comprehensive guides

LOCAL Enhancement (Recommended):

  • Uses your Claude Code Max plan (no API costs)
  • Opens new terminal with Claude Code
  • Analyzes reference files automatically
  • Takes 30-60 seconds
  • Quality: 9/10 (comparable to API version)

7. Large Documentation Support (10K-40K+ Pages)

For massive documentation sites like Godot (40K pages), AWS, or Microsoft Docs:

# 1. Estimate first (discover page count) python3 cli/estimate_pages.py configs/godot.json # 2. Auto-split into focused sub-skills python3 cli/split_config.py configs/godot.json --strategy router # Creates: # - godot-scripting.json (5K pages) # - godot-2d.json (8K pages) # - godot-3d.json (10K pages) # - godot-physics.json (6K pages) # - godot-shaders.json (11K pages) # 3. Scrape all in parallel (4-8 hours instead of 20-40!) for config in configs/godot-*.json; do python3 cli/doc_scraper.py --config $config & done wait # 4. Generate intelligent router/hub skill python3 cli/generate_router.py configs/godot-*.json # 5. Package all skills python3 cli/package_multi.py output/godot*/ # 6. Upload all .zip files to Claude # Users just ask questions naturally! # Router automatically directs to the right sub-skill!

Split Strategies:

  • auto - Intelligently detects best strategy based on page count
  • category - Split by documentation categories (scripting, 2d, 3d, etc.)
  • router - Create hub skill + specialized sub-skills (RECOMMENDED)
  • size - Split every N pages (for docs without clear categories)

Benefits:

  • ✅ Faster scraping (parallel execution)
  • ✅ More focused skills (better Claude performance)
  • ✅ Easier maintenance (update one topic at a time)
  • ✅ Natural user experience (router handles routing)
  • ✅ Avoids context window limits

Configuration:

{ "name": "godot", "max_pages": 40000, "split_strategy": "router", "split_config": { "target_pages_per_skill": 5000, "create_router": true, "split_by_categories": ["scripting", "2d", "3d", "physics"] } }

Full Guide: Large Documentation Guide

8. Checkpoint/Resume for Long Scrapes

Never lose progress on long-running scrapes:

# Enable in config { "checkpoint": { "enabled": true, "interval": 1000 // Save every 1000 pages } } # If scrape is interrupted (Ctrl+C or crash) python3 cli/doc_scraper.py --config configs/godot.json --resume # Resume from last checkpoint ✅ Resuming from checkpoint (12,450 pages scraped) ⏭️ Skipping 12,450 already-scraped pages 🔄 Continuing from where we left off... # Start fresh (clear checkpoint) python3 cli/doc_scraper.py --config configs/godot.json --fresh

Benefits:

  • ✅ Auto-saves every 1000 pages (configurable)
  • ✅ Saves on interruption (Ctrl+C)
  • ✅ Resume with --resume flag
  • ✅ Never lose hours of scraping progress

First Time (With Scraping + Enhancement)

# 1. Scrape + Build + AI Enhancement (LOCAL, no API key) python3 cli/doc_scraper.py --config configs/godot.json --enhance-local # 2. Wait for new terminal to close (enhancement completes) # Check the enhanced SKILL.md: cat output/godot/SKILL.md # 3. Package python3 cli/package_skill.py output/godot/ # 4. Done! You have godot.zip with excellent SKILL.md

Time: 20-40 minutes (scraping) + 60 seconds (enhancement) = ~21-41 minutes

Using Existing Data (Fast!)

# 1. Use cached data + Local Enhancement python3 cli/doc_scraper.py --config configs/godot.json --skip-scrape python3 cli/enhance_skill_local.py output/godot/ # 2. Package python3 cli/package_skill.py output/godot/ # 3. Done!

Time: 1-3 minutes (build) + 60 seconds (enhancement) = ~2-4 minutes total

Without Enhancement (Basic)

# 1. Scrape + Build (no enhancement) python3 cli/doc_scraper.py --config configs/godot.json # 2. Package python3 cli/package_skill.py output/godot/ # 3. Done! (SKILL.md will be basic template)

Time: 20-40 minutes Note: SKILL.md will be generic - enhancement strongly recommended!

Config Framework Description
godot.json Godot Engine Game development
react.json React UI framework
vue.json Vue.js Progressive framework
django.json Django Python web framework
fastapi.json FastAPI Modern Python API
ansible-core.json Ansible Core 2.19 Automation & configuration
# Godot python3 cli/doc_scraper.py --config configs/godot.json # React python3 cli/doc_scraper.py --config configs/react.json # Vue python3 cli/doc_scraper.py --config configs/vue.json # Django python3 cli/doc_scraper.py --config configs/django.json # FastAPI python3 cli/doc_scraper.py --config configs/fastapi.json # Ansible python3 cli/doc_scraper.py --config configs/ansible-core.json

🎨 Creating Your Own Config

python3 cli/doc_scraper.py --interactive # Follow prompts, it will create the config for you
# Copy a preset cp configs/react.json configs/myframework.json # Edit it nano configs/myframework.json # Use it python3 cli/doc_scraper.py --config configs/myframework.json
{ "name": "myframework", "description": "When to use this skill", "base_url": "https://docs.myframework.com/", "selectors": { "main_content": "article", "title": "h1", "code_blocks": "pre code" }, "url_patterns": { "include": ["/docs", "/guide"], "exclude": ["/blog", "/about"] }, "categories": { "getting_started": ["intro", "quickstart"], "api": ["api", "reference"] }, "rate_limit": 0.5, "max_pages": 500 }
output/ ├── godot_data/ # Scraped raw data │ ├── pages/ # JSON files (one per page) │ └── summary.json # Overview │ └── godot/ # The skill ├── SKILL.md # Enhanced with real examples ├── references/ # Categorized docs │ ├── index.md │ ├── getting_started.md │ ├── scripting.md │ └── ... ├── scripts/ # Empty (add your own) └── assets/ # Empty (add your own)
# Interactive mode python3 cli/doc_scraper.py --interactive # Use config file python3 cli/doc_scraper.py --config configs/godot.json # Quick mode python3 cli/doc_scraper.py --name react --url https://react.dev/ # Skip scraping (use existing data) python3 cli/doc_scraper.py --config configs/godot.json --skip-scrape # With description python3 cli/doc_scraper.py \ --name react \ --url https://react.dev/ \ --description "React framework for building UIs"

Edit max_pages in config to test:

{ "max_pages": 20 // Test with just 20 pages }
# Scrape once python3 cli/doc_scraper.py --config configs/react.json # Rebuild multiple times (instant) python3 cli/doc_scraper.py --config configs/react.json --skip-scrape python3 cli/doc_scraper.py --config configs/react.json --skip-scrape
# Test in Python from bs4 import BeautifulSoup import requests url = "https://docs.example.com/page" soup = BeautifulSoup(requests.get(url).content, 'html.parser') # Try different selectors print(soup.select_one('article')) print(soup.select_one('main')) print(soup.select_one('div[role="main"]'))
# After building, check: cat output/godot/SKILL.md # Should have real examples cat output/godot/references/index.md # Categories
  • Check your main_content selector
  • Try: article, main, div[role="main"]

Data Exists But Won't Use It?

# Force re-scrape rm -rf output/myframework_data/ python3 cli/doc_scraper.py --config configs/myframework.json

Edit the config categories section with better keywords.

# Delete old data rm -rf output/godot_data/ # Re-scrape python3 cli/doc_scraper.py --config configs/godot.json
Task Time Notes
Scraping (sync) 15-45 min First time only, thread-based
Scraping (async) 5-15 min 2-3x faster with --async flag
Building 1-3 min Fast!
Re-building <1 min With --skip-scrape
Packaging 5-10 sec Final zip

One tool does everything:

  1. ✅ Scrapes documentation
  2. ✅ Auto-detects existing data
  3. ✅ Generates better knowledge
  4. ✅ Creates enhanced skills
  5. ✅ Works with presets or custom configs
  6. ✅ Supports skip-scraping for fast iteration

Simple structure:

  • doc_scraper.py - The tool
  • configs/ - Presets
  • output/ - Everything else

Better output:

  • Real code examples with language detection
  • Common patterns extracted from docs
  • Smart categorization
  • Enhanced SKILL.md with actual examples
# Try Godot python3 cli/doc_scraper.py --config configs/godot.json # Try React python3 cli/doc_scraper.py --config configs/react.json # Or go interactive python3 cli/doc_scraper.py --interactive

MIT License - see LICENSE file for details


Happy skill building! 🚀

Read Entire Article