What AI-native engineers are doing differently than you

4 months ago 7

The “what” and the “how” in software engineering occasionally change at the same time. Often, one triggers the other. The introduction of mainframes ushered in batch practices that capitalized on the scarcity of computing power. As the Internet took off, developers needed to quickly update their apps and Agile took hold. Mobile computing and cloud computing happened, and DevOps emerged shortly thereafter. Our current moment seems different as the new “what” and “how” are happening simultaneously, but independently. The “what” that’s hot right now is AI-driven apps. Today’s fast-developing “how” is AI-native software engineering. I’m seeing all sorts of teams adopt AI to change how they work. What are they doing that you’re not?

AI natives always start (or end) with AI. The team at Pulley says “the typical workflow involves giving the task to an AI model first (via Cursor or a CLI program) to see how it performs, with the understanding that plenty of tasks are still hit or miss.” Studying a domain or competitor? Start with Gemini Deep Research or another AI research service. Find yourself stuck in an endless debate over some aspect of design? While you argued, the AI natives built three prototypes with AI to prove out the idea. Googlers are using it to build slides, debug production incidents, and much more. You might say “but I used an LLM before and it hallucinated while generating code with errors in it.” Stop it, so do you. Update your toolchain! Anybody seriously coding with AI today is using agents. Hallucinations are mostly a solved problem with proper context engineering and agentic loops. This doesn’t mean we become intellectually lazy. Learn to code, be an expert, and stay in charge. But it’s about regularly bringing AI in at the right time to make an impact.

I use the Gemini CLI to:

– debug production incidents,
– activate and actuate changes on my CI/CD,
– do risk analysis of changes and postmortems,
– write slides and docs,
– run capacity planning estimates.

is WAY MORE than coding. https://t.co/iqKkhA5Mpo

— Ramón Medrano Llamas (@rmedranollamas) June 26, 2025

AI natives switched to spec-driven development. It’s not about code-first. Heck, we’re practically hiding the code! Modern software engineers are creating (or asking AI) for implementation plans first. My GM at Google Keith Ballinger says he starts projects by “ask[ing] the tool to create a technical design (and save to a file like arch.md) and an implementation plan (saved to tasks.md).” Former Googler Brian Grant wrote a piece where he explained creating 8000 character instructions that steered the agent towards the goal. Those folks at Pulley say that they find themselves “thinking less about writing code and more about writing specifications – translating the ideas in my head into clear, repeatable instructions for the AI.” These design specs have massive follow-on value. Maybe it’s used to generate the requirements doc. Or the first round of product documentation. It might produce the deployment manifest, marketing message, and training deck for the sales field. Today’s best engineers are great at documenting intent that in-turn, spawns the technical solution.

I have been testing and using Gemini CLI in the last weeks. Here's what my setup looks like:

– For complex tasks, I *never* ask for code first. My initial prompt is to create a plan "Create a detailed implementation plan for [FEATURE, BUG]".
– Create multiple hierarchical GEMINI… pic.twitter.com/4brvJqv8nt

— Philipp Schmid (@_philschmid) June 25, 2025

AI natives have different engineer and team responsibilities. With AI agents, you orchestrate. You remain responsible for every commit into main, but focus more on defining and “assigning” the work to get there. Legitimate work is directed to background agents like Jules. Or give the Gemini CLI the task of chewing through an analysis or starting a code migration project. Either way, build lots of the right tools and empower your agents with them. Every engineer is a manager now. And the engineer needs to intentionally shape the codebase so that it’s easier for the AI to work with. That means rule files (e.g. GEMINI.md), good READMEs, and such. This puts the engineer into the role of supervisor, mentor, and validator. AI-first teams are smaller, able to accomplish more, capable of compressing steps of the SDLC and delivering better quality, faster. AI-native teams have “almost eliminated engineering effort as the current bottleneck to shopping product.”

AI Agents turn everyone into a manager. We thought the future of software was AI reviewing and editing our work. But in fact the opposite is true. The future of software is to kick off tasks to AI Agents and review, edit, and orchestrate their work. https://t.co/dAlgt3IlRD

— Aaron Levie (@levie) June 27, 2025

There are many implications for all this. Quality is still paramount. Don’t create slop. but to achieve the throughput, breadth, and quality your customers demand requires a leap forward in your approach. AI is overhyped and under-hyped at the same time, and it’s foolish to see AI as the solution to everything. But it’s a objectively valuable to a new approach. Many teams have already made the shift and have learned to continuously evaluate and incorporate new AI-first approaches. It’s awesome! If you’re ignoring AI entirely, you’re not some heroic code artisan; you’re just being unnecessarily stubborn and falling behind. Get uncomfortable, reassess how you work, and follow the lead of some AI-native pioneers blazing the trail.

Read Entire Article