Whole-genome ancestry of an Old Kingdom Egyptian

5 hours ago 1

References

  1. Garstang, J. in The Burial Customs of Ancient Egypt (ed. Garstang, J.) 26–30 (Archibald Constable, 1907).

  2. Lazaridis, I. et al. Ancient DNA from Mesopotamia suggests distinct pre-pottery and pottery Neolithic migrations into Anatolia. Science 377, 982–987 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175.e28 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Haber, M. et al. Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences. Am. J. Hum. Genet. 101, 274–282 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Agranat-Tamir, L. et al. The genomic history of the Bronze Age Southern Levant. Cell 181, 1146–1157.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salvatori, S. & Usai, D. The neolithic and ‘pastoralism’ along the Nile: a dissenting view. J. World Prehist. 32, 251–285 (2019).

    Article  Google Scholar 

  7. Wengrow, D. The Archaeology of Early Egypt: Social Transformations in North-East Africa, 10,000 to 2,650 BC (Cambridge Univ. Press, 2006).

    Google Scholar 

  8. Bard, K. A. in The Oxford History of Ancient Egypt (ed. Shaw, I.) 61–88 (Oxford Univ. Press, 2000).

    Google Scholar 

  9. Stevenson, A. in The Sumerian World (ed. Crawford, H.) 620–636 (Routledge, 2013).

    Google Scholar 

  10. Malek, J. in The Oxford History of Ancient Egypt (ed. Shaw, I.) 89–117 (Oxford Univ. Press, 2000).

    Google Scholar 

  11. Doherty, S. K. The Origins and Use of the Potter’s Wheel in Ancient Egypt (Archaeopress, 2015).

    Book  Google Scholar 

  12. Keita, S. O. Y. Further studies of crania from ancient northern Africa: an analysis of crania from First Dynasty Egyptian tombs. Am. J. Phys. Anthropol. 87, 245–254 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Prowse, T. L. & Lovell, N. C. Concordance of cranial and dental morphological traits and evidence for endogamy in ancient Egypt. Am. J. Phys. Anthropol. 101, 237–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Irish, J. D. Who were the ancient Egyptians? Dental affinities among Neolithic through postdynastic peoples. Am. J. Phys. Anthropol. 129, 529–543 (2006).

    Article  PubMed  Google Scholar 

  15. Zakrzewski, S. R. in Egyptian Bioarchaeology: Humans, Animals, and the Environment (eds Ikram, S. et al.) 157–167 (Sidestone, 2015).

    Google Scholar 

  16. Dicke-Toupin, C. R. Population Continuity or Replacement at Ancient Lachish? (Fairbanks, 2012).

    Google Scholar 

  17. Irish, J. D. Diachronic and synchronic dental trait affinities of late and post-Pleistocene peoples from North Africa. Homo 49, 138–155 (1998).

    Google Scholar 

  18. Maaranen, N., Zakrzewski, S. & Schutkowski, H. Who were the Hyksos? Curr. Anthropol. 63, 66–69 (2022).

    Article  Google Scholar 

  19. Pääbo, S. Molecular cloning of ancient Egyptian mummy DNA. Nature 314, 644–645 (1985).

    Article  PubMed  Google Scholar 

  20. Schuenemann, V. J. et al. Ancient Egyptian mummy genomes suggest an increase of sub-Saharan African ancestry in post-Roman periods. Nat. Commun. 8, 15694 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaw, I. The Oxford History of Ancient Egypt (Oxford Univ. Press, 2000).

    Book  Google Scholar 

  22. De Meyer, M. et al. in Under the Potter’s Tree: Studies on Ancient Egypt Presented to Janine Bourriau Vol. 204 (eds Aston, D. et al.) 679–702 (Peeters, 2011).

    Google Scholar 

  23. Power, R. K. & Tristant, Y. From refuse to rebirth: repositioning the pot burial in the Egyptian archaeological record. Antiquity 90, 1474–1488 (2016).

    Article  Google Scholar 

  24. Lasisi, T. & Shriver, M. D. Focus on African diversity confirms complexity of skin pigmentation genetics. Genome Biol. 19, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buikstra, J. E. & Ubelaker, D. U. Standards for Data Collection from Human Skeletal Remains (Arkansas Archeological Survey, 1994).

    Google Scholar 

  26. Raxter, M. H. et al. Stature estimation in ancient Egyptians: a new technique based on anatomical reconstruction of stature. Am. J. Phys. Anthropol. 136, 147–155 (2008).

    Article  PubMed  Google Scholar 

  27. Işcan, M. Y., Loth, S. R. & Wright, R. K. Age estimation from the rib by phase analysis: white males. J. Forensic Sci. 29, 1094–1104 (1984).

    Article  PubMed  Google Scholar 

  28. Kennedy, K. A. R. in Reconstruction of Life from the Skeleton (eds Kennedy, K. A. R. & Işcan, M. Y.) 129–160 (Alan R. Liss, 1989).

    Google Scholar 

  29. Capasso, L., Kenney, K. A. R. & Wilczak, C. A. Atlas of Occupational Markers on Human Remains (Edigratifal, 1998).

    Google Scholar 

  30. Buzon, M. R. & Simonetti, A. Strontium isotope (87Sr/86Sr) variability in the Nile Valley: identifying residential mobility during ancient Egyptian and Nubian sociopolitical changes in the New Kingdom and Napatan periods. Am. J. Phys. Anthropol. 151, 1–9 (2013).

    Article  PubMed  Google Scholar 

  31. Stantis, C., Nowell, G. M., Prell, S. & Schutkowski, H. Animal proxies to characterize the strontium biosphere in the northeastern Nile Delta. Bioarchaeology of the Near East 13, 1–13 (2019).

    Google Scholar 

  32. Touzeau, A. et al. Egyptian mummies record increasing aridity in the Nile Valley from 5500 to 1500 yr before present. Earth Planet. Sci. Lett. 375, 92–100 (2013).

    Article  CAS  Google Scholar 

  33. Richards, M. P. in Archaeological Science: An Introduction (eds Richards, M. P. & Britton, K.) 125–144 (Cambridge Univ. Press, 2019).

  34. Touzeau, A. et al. Diet of ancient Egyptians inferred from stable isotope systematics. J. Archaeol. Sci. 46, 114–124 (2014).

    Article  CAS  Google Scholar 

  35. Macko, S. A. et al. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos. Trans. R. Soc. London, B: Biol. Sci. 354, 65–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Thompson, A. H., Richards, M. P., Shortland, A. & Zakrzewski, S. R. Isotopic palaeodiet studies of ancient Egyptian fauna and humans. J. Archaeol. Sci. 32, 451–463 (2005).

    Article  Google Scholar 

  37. Thompson, A. H., Chaix, L. & Richards, M. P. Stable isotopes and diet at ancient Kerma, Upper Nubia (Sudan). J. Archaeol. Sci. 35, 376–387 (2008).

    Article  Google Scholar 

  38. Poulallion, E. et al. High δ15N values in Predynastic Egyptian archeological remains: a potential indicator for localised soil fertilisation practices in extreme conditions. Preprint at bioRxiv https://doi.org/10.1101/2024.11.18.624066 (2024).

  39. Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article  PubMed  Google Scholar 

  40. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maier, R. et al. On the limits of fitting complex models of population history to f-statistics. eLife 12, e85492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59–71.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yüncü, E. et al. False discovery rates of qpAdm-based screens for genetic admixture. Preprint at bioRxiv https://doi.org/10.1101/2023.04.25.538339 (2023).

  45. Simões, L. G. et al. Northwest African Neolithic initiated by migrants from Iberia and Levant. Nature 618, 550–556 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feldman, M. et al. Ancient DNA sheds light on the genetic origins of early Iron Age Philistines. Sci. Adv. 5, eaax0061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zvelebil, M. & Lillie, M. in Europe’s First Farmers (ed Price, T. D.) 57–92 (Cambridge Univ. Press, 2000).

  49. Pinhasi, R. & Stock, J. T. Human Bioarchaeology of the Transition to Agriculture (Wiley, 2011).

    Book  Google Scholar 

  50. Martin, N. et al. From hunter-gatherers to food producers: new dental insights into the Nile Valley population history (Late Paleolithic-Neolithic). Am. J. Biol. Anthropol. 184, e24948 (2024).

    Article  PubMed  Google Scholar 

  51. Stevenson, A. The Egyptian Predynastic and state formation. J. Archaeol. Res. 24, 421–468 (2016).

    Article  Google Scholar 

  52. Redford, D. B. Egypt, Canaan, and Israel in Ancient Times (Princeton Univ. Press, 1992).

  53. Llorente, M. G. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015).

    Article  CAS  Google Scholar 

  54. Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, K. et al. Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Sci. Adv. 6, eaaz0183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bourriau, J. in The Oxford History of Ancient Egypt (ed. Shaw, I.) 172–206 (Oxford Univ. Press, 2000).

    Google Scholar 

  57. Ryholt, K. S. B. & Bülow-Jacobsen, A. The Political Situation in Egypt During the Second Intermediate Period, C. 1800-1550 B.C. (Museum Tusculanum, 1997).

    Google Scholar 

  58. Weiss, B. The decline of Late Bronze Age civilization as a possible response to climatic change. Clim. Change 4, 173–198 (1982).

    Article  Google Scholar 

  59. Ward, W. A., Joukowsky, M. S. & Åström, P. The Crisis Years: The 12th Century B.C.: From Beyond the Danube to the Tigris (Kendall Hunt, 1992).

    Google Scholar 

  60. Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Salter-Townshend, M. & Myers, S. Fine-scale inference of ancestry segments without prior knowledge of admixing groups. Genetics 212, 869–889 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Elmonem, M. A. et al. The Egypt Genome Project. Nat. Genet. 56, 1035–1037 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Dee, M. C14 data pottery coffin burial excavated by Garstang in Nuwayrat (World Museum, Liverpool, UK, 2016).

  67. Vanthuyne, B. Early Old Kingdom Rock Circle Cemeteries in the 15th and 16th Nomes of Upper Egypt. A Socio-archaeological Investigation of the Cemeteries in Dayr al-Barshā, Dayr Abū Ḥinnis, Benī Ḥasan al-Shurūq and Nuwayrāt. PhD thesis, KU Leuven (2017).

  68. Bronk Ramsey, C. Oxcal v.4.4.4 calibration program (2021); https://c14.arch.ox.ac.uk/oxcal.html.

  69. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article  CAS  Google Scholar 

  70. Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  CAS  Google Scholar 

  71. Bayliss, A. & Marshall, P. Radiocarbon Dating and Chronological Modelling: Guidelines and Best Practice (Historical Association, 2022).

    Google Scholar 

  72. Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177 (1988).

    Article  CAS  Google Scholar 

  73. Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    Article  CAS  PubMed  Google Scholar 

  74. Scorrer, J. et al. Diversity aboard a Tudor warship: investigating the origins of the Mary Rose crew using multi-isotope analysis. R. Soc. Open Sci. 8, 202106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coplen, T. B. Normalization of oxygen and hydrogen isotope data. Chem. Geol. 72, 293–297 (1988).

    CAS  Google Scholar 

  76. Chenery, C. A., Pashley, V., Lamb, A. L., Sloane, H. J. & Evans, J. A. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun. Mass Spectrom. 26, 309–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Font, L., Nowell, G. M., Graham Pearson, D., Ottley, C. J. & Willis, S. G. Sr isotope analysis of bird feathers by TIMS: a tool to trace bird migration paths and breeding sites. J. Anal. At. Spectrom. 22, 513 (2007).

    Article  CAS  Google Scholar 

  78. Nier, A. O. The isotopic constitution of strontium, barium, bismuth, thallium and mercury. Phys. Rev. 54, 275–278 (1938).

    Article  CAS  Google Scholar 

  79. Avanzinelli, R., Conticelli, S. & Francalanci, L. High precision Sr, Nd, and Pb isotopic analyses using the new generation Thermal Ionisation Mass Spectrometer ThermoFinnigan Triton-Ti®. Periodico di Mineralogia 74, 147–166 (2015).

    Google Scholar 

  80. Işcan, M. Y., Loth, S. R. & Wright, R. K. Age estimation from the rib by phase analysis: white females. J. Forensic Sci. 30, 853–863 (1985).

    Article  PubMed  Google Scholar 

  81. Işcan, M. Y. & Loth, S. R. Determination of age from the sternal rib in white males: a test of the phase method. J. Forensic Sci. 31, 122–132 (1986).

    Article  PubMed  Google Scholar 

  82. Meindl, R. S. & Lovejoy, C. O. Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am. J. Phys. Anthropol. 68, 57–66 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R. & Mensforth, R. P. Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 68, 15–28 (1985).

    Article  CAS  PubMed  Google Scholar 

  84. Brooks, S. & Suchey, J. M. Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum. Evol. 5, 227–238 (1990).

    Article  Google Scholar 

  85. Trotter, M. & Gleser, G. C. Estimation of stature from long bones of American whites and Negroes. Am. J. Phys. Anthropol. 10, 463–514 (1952).

    Article  CAS  PubMed  Google Scholar 

  86. Robins, G. & Shute, C. C. D. Predynastic Egyptian stature and physical proportions. Hum. Evol. 1, 313–324 (1986).

    Article  Google Scholar 

  87. Bass, W. M. Human Osteology: A Laboratory and Field Manual (Missouri Archaeological Society, 2006).

    Google Scholar 

  88. Richard Scott, G. & Irish, J. D. Human Tooth Crown and Root Morphology (Cambridge Univ. Press, 2017).

    Book  Google Scholar 

  89. Howells, W. W. Skull Shapes and the Map: Craniometric Analyses in the Dispersion of Modern Homo, Vol. 79 (Harvard Univ. Press, 1989) .

  90. Scott, G. R. et al. rASUDAS: a new web-based application for estimating ancestry from tooth morphology. Forensic Anthropol. 1, 18–31 (2018).

    Article  Google Scholar 

  91. Wright, R. Guide to Using the CRANID Programs Cr6bInd: For Linear and Nearest Neighbours Discriminant Analysis (2012); http://www.scribd.com/document/324417767/CRANID6b-ManuaL-1-pdf

  92. Ortner, D. J. & Putschar, W. Identification of Paleopathological Conditions in Human Skeletal Remains (Smithsonian Institution, 1985).

    Google Scholar 

  93. Aufderheide, A. C. & Rodríguez-Martín, C. The Cambridge Encyclopedia of Human Paleopathology (Cambridge Univ. Press, 1998).

    Google Scholar 

  94. Hawkey, D. E. & Merbs, C. F. Activity‐induced musculoskeletal stress markers (MSM) and subsistence strategy changes among ancient Hudson Bay Eskimos. Int. J. Osteoarchaeol. 5, 324–338 (1995).

    Article  Google Scholar 

  95. Alves-Cardoso, F. & Assis, S. Exploring ‘wear and tear’ of joints and ‘muscle function’ assumptions in skeletons with known occupation at death. Am. J. Phys. Anthropol. 175, 689–700 (2021).

    Article  PubMed  Google Scholar 

  96. Wallace, I. J. et al. Experimental evidence that physical activity inhibits osteoarthritis: implications for inferring activity patterns from osteoarthritis in archeological human skeletons. Am. J. Biol. Anthropol. 177, 223–231 (2022).

    Article  Google Scholar 

  97. Wilkinson, C. M. & Mahoney, G. in Craniofacial Identification (eds Wilkinson, C. M. & Rynn, C.) 222–237 (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  98. El-Mehallawi, I. H. & Soliman, E. M. Ultrasonic assessment of facial soft tissue thicknesses in adult Egyptians. Forensic Sci. Int. 117, 99–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Wilkinson, C. M. Facial reconstruction—anatomical art or artistic anatomy? J. Anat. 216, 235–250 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rynn, C., Balueva, T. & Veselovskaya, E. in Craniofacial Identification (eds Wilkinson, C. M. & Rynn, C.) 193–202 (Cambridge Univ. Press, 2012).

    Google Scholar 

  101. Wilkinson, C. M. Cognitive bias and facial depiction from skeletal remains. Bioarchaeology Int. 4, 1–14 (2021).

    Article  Google Scholar 

  102. Swali, P. et al. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat. Commun. 14, 2930 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fellows Yates, J. A. et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ 9, e10947 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 15, 356 (2014).

    Article  Google Scholar 

  113. Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).

    Article  CAS  Google Scholar 

  114. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schiffels, S. SequenceTool. https://github.com/stschiff/sequenceTools (2022).

  116. Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87–e87 (2010).

    Article  PubMed  Google Scholar 

  117. Schönherr, S., Weissensteiner, H., Kronenberg, F. & Forer, L. Haplogrep3—an interactive haplogroup classification and analysis platform. Nucleic Acids Res. 51, W263–W268 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into reference phylogenies. Mol. Biol. Evol. 39, msac017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Altınışık, N. E. et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic Transition. Sci. Adv. 8, eabo3609 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Clemente, F. et al. The genomic history of the Aegean palatial civilizations. Cell 184, 2565–2586.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl Acad. Sci. USA 115, 6774–6779 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gokhman, D. et al. Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nat. Commun. 11, 1189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haber, M. et al. A transient pulse of genetic admixture from the crusaders in the near east identified from ancient genome sequences. Am. J. Hum. Genet. 104, 977–984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Haber, M. et al. A genetic history of the near east from an aDNA time course sampling eight points in the past 4,000 years. Am. J. Hum. Genet. 107, 149–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592, 253–257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Kılınç, G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lazaridis, I. et al. A genetic probe into the ancient and medieval history of Southern Europe and West Asia. Science 377, 940–951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lipson, M. et al. Ancient West African foragers in the context of African population history. Nature 577, 665–670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lipson, M. et al. Ancient DNA and deep population structure in sub-Saharan African foragers. Nature 603, 290–296 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McColl, H. et al. The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Omrak, A. et al. Genomic evidence establishes Anatolia as the source of the European Neolithic gene pool. Curr. Biol. 26, 270–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of native Americans. Nature 505, 87–91 (2014).

    Article  PubMed  Google Scholar 

  150. Rodríguez-Varela, R. et al. Genomic analyses of pre-European conquest human remains from the Canary Islands reveal close affinity to modern North Africans. Curr. Biol. 28, 1677–1679 (2018).

    Article  PubMed  Google Scholar 

  151. Schlebusch, C. M. et al. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358, 652–655 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Sirak, K. A. et al. Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia. Nat. Commun. 12, 7283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. van de Loosdrecht, M. et al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018).

    Article  PubMed  Google Scholar 

  155. Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. 31, 2455–2468.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 27, 3202–3208.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  158. Wang, C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans.Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Flegontov, P. et al. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pagani, L. et al. Tracing the route of modern humans out of Africa by using 225 human genome sequences from Ethiopians and Egyptians. Am. J. Hum. Genet. 96, 986–991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pickrell, J. K. et al. The genetic prehistory of southern Africa. Nat. Commun. 3, 1143 (2012).

    Article  PubMed  Google Scholar 

  166. Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Nature 538, 510–513 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Vyas, D. N., Al-Meeri, A. & Mulligan, C. J. Testing support for the northern and southern dispersal routes out of Africa: an analysis of Levantine and southern Arabian populations. Am. J. Phys. Anthropol. 164, 736–749 (2017).

    Article  PubMed  Google Scholar 

  168. Biagini, S. A. et al. People from Ibiza: an unexpected isolate in the Western Mediterranean. Eur. J. Hum. Genet. 27, 941–951 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Patterson, N., Moorjani, P., Luo, Y., Mallick, S. & Rohland, N. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci. Data 11, 1–10 (2024).

    Article  Google Scholar 

  171. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sousa da Mota, B. et al. Imputation of ancient human genomes. Nat. Commun. 14, 3660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  176. Chaitanya, L. et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci. Int. Genet. 35, 123–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Walsh, S. et al. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci. Int. Genet. 9, 150–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Walsh, S. et al. Global skin colour prediction from DNA. Hum. Genet. 136, 847–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Read Entire Article