Data availability
LHCb data used in this analysis will be released according to the LHCb external data access policy, which can be downloaded from https://opendata.cern.ch/record/410/files/LHCb-Data-Policy.pdf. The raw data used for Figs. 1–3 and Extended Data Figs. 1–3 can be downloaded from https://cds.cern.ch/record/2927827. No access codes are required.
Code availability
Software and code that is associated with this publication and that is publicly available is referenced within the publication content. Specific analysis software or code used to produce the results shown in the publication is preserved within the LHCb Collaboration internally and can be provided on reasonable request, provided it does not contain information that can be associated with unpublished results.
References
LHCb Collaboration. The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).
Kobayashi, M. & Maskawa, T. CP-violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973).
Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A 117, 610 (1928).
Anderson, C. D. The positive electron. Phys. Rev. 43, 491 (1933).
Chamberlain, O., Segrè, E., Wiegand, C. & Ypsilantis, T. Observation of antiprotons. Phys. Rev. 100, 947 (1955).
Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). Erratum 652 C4 (2021).
Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967).
Lee, T. D. & Yang, C. N. Question of parity conservation in weak interactions. Phys. Rev. 104, 254 (1956).
Wu, C. S. et al. Experimental test of parity conservation in β decay. Phys. Rev. 105, 1413 (1957).
Christenson, J. H., Cronin, J. W., Fitch, V. L. & Turlay, R. Evidence for the 2π decay of the \({K}_{2}^{0}\) meson. Phys. Rev. Lett. 13, 138 (1964).
BaBar Collaboration. Observation of CP violation in the B0 meson system. Phys. Rev. Lett. 87, 091801 (2001).
Belle Collaboration. Observation of large CP violation in the neutral B meson system. Phys. Rev. Lett. 87, 091802 (2001).
LHCb Collaboration. Observation of CP violation in charm decays. Phys. Rev. Lett. 122, 211803 (2019).
Heavy Flavor Averaging Group. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021. Phys. Rev. D 107, 052008 (2023).
Dine, M. & Kusenko, A. Origin of the matter-antimatter asymmetry. Rev. Mod. Phys. 76, 1 (2003).
LHCb Collaboration. First observation of CP violation in the decays of \({B}_{s}^{0}\) mesons. Phys. Rev. Lett. 110, 221601 (2013).
LHCb Collaboration. Observation of CP violation in two-body \({B}_{(s)}^{0}\)-meson decays to charged pions and kaons. J. High Energy Phys. 03, 075 (2021).
LHCb collaboration et al. Measurement of CP asymmetries in \({\Lambda }_{b}^{0}\to p{h}^{-}\) decays. Phys. Rev. D 111, 092004 (2025).
LHCb Collaboration. Direct CP violation in charmless three-body decays of B± mesons. Phys. Rev. D 108, 012008 (2023).
LHCb Collaboration. Searches for \({\varLambda }_{b}^{0}\) and \({\varLambda }_{b}^{0}\) decays to \({\varLambda }_{b}^{0}\) and \({\varLambda }_{b}^{0}\) final states with first observation of the \({\varLambda }_{b}^{0}\) decay. J. High Energy Phys. 04, 087 (2014).
LHCb Collaboration. Search for CP violation in \({\varXi }_{b}^{-}\to p{K}^{-}{K}^{-}\) decays. Phys. Rev. D 104, 052010 (2021).
LHCb Collaboration. Study of \({\varLambda }_{b}^{0}\) and \({\varLambda }_{b}^{0}\) decays to \({\varLambda }_{b}^{0}\) and evidence for CP violation in \({\varLambda }_{b}^{0}\). Phys. Rev. Lett. 134, 101802 (2024).
Bander, M., Silverman, D. & Soni, A. CP noninvariance in the decays of heavy charged quark systems. Phys. Rev. Lett. 43, 242 (1979).
Ellis, J. R., Gaillard, M. K., Nanopoulos, D. V. & Rudaz, S. The phenomenology of the next left-handed quarks. Nucl. Phys. B 131, 285 (1977). Erratum 04, 142 (2020).
Beneke, M., Buchalla, G., Neubert, M. & Sachrajda, C. T. QCD factorization for B → ππ decays: strong phases and CP violation in the heavy quark limit. Phys. Rev. Lett. 83, 1914 (1999).
LHCb Collaboration. Amplitude analysis of B± → π±K+K− decays. Phys. Rev. Lett. 123, 231802 (2019).
LHCb Collaboration. Observation of several sources of CP violation in B+ → π+π+π− decays. Phys. Rev. Lett. 124, 031801 (2020).
LHCb Collaboration. Amplitude analysis of the B+ → π+π+π− decay. Phys. Rev. D 101, 012006 (2020).
Wang, J.-P. & Yu, F.-S. CP violation of baryon decays with Nπ rescatterings. Chin. Phys. C 48, 101002 (2024).
Particle Data Group. Review of particle physics. Phys. Rev. D 110, 030001 (2024).
LHCb Collaboration. LHCb detector performance. Int. J. Mod. Phys. A 30, 1530022 (2015).
Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119 (1997).
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Wadsworth International Group, 1984).
LHCb Collaboration. Observation of a \({\varLambda }_{b}^{0}-{\bar{\varLambda }}_{b}^{0}\) production asymmetry in proton-proton collisions at \({\Lambda }_{b}^{0}-{\bar{\Lambda }}_{b}^{0}\) and 8 TeV. J. High Energy Phys. 10, 060 (2021).
LHCb Collaboration. Measurement of CP asymmetries in charmless four-body \({\Lambda }_{b}^{0}\) and \({\Lambda }_{b}^{0}\) decays. Eur. Phys. J. C 79, 745 (2019).
Zhang, Z.-H. & Guo, X.-H. A novel strategy for searching for CP violations in the baryon sector. J. High Energy Phys. 07, 177 (2021).
Briscoe, W. et al. INS DAC Services. GWDAC https://gwdac.phys.gwu.edu/ (2024).
Han, J.-J. et al. Establishing CP violation in b-baryon decays. Phys. Rev. Lett. 134, 221801 (2025).
Sjöstrand, T., Mrenna, S. & Skands, P. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008).
Sjöstrand, T., Mrenna, S. & Skands, P. PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006).
Belyaev, I. et al. Handling of the generation of primary events in Gauss, the LHCb simulation framework. J. Phys.: Conf. Ser. 331, 032047 (2011).
Lange, D. J. The EvtGen particle decay simulation package. Nucl. Instrum. Methods Phys. Res. A 462, 152 (2001).
Davidson, N., Przedzinski, T. & Was, Z. PHOTOS interface in C++: technical and physics documentation. Comput. Phys. Commun. 199, 86 (2016).
Geant4 Collaboration. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006).
Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).
Clemencic, M. et al. The LHCb simulation application, Gauss: design, evolution and experience. J. Phys.: Conf. Ser. 331, 032023 (2011).
LHCb collaboration. LHCb Trigger and Online Upgrade Technical Design Report. CERN-LHCC-2014-016 (CERN, 2014); http://cdsweb.cern.ch/search?p=CERN-LHCC-2014-016&f=reportnumber&action_search=Search&c=LHCb.
Gligorov, V. V. & Williams, M. Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree. J. Instrum. 8, P02013 (2013).
Likhomanenko, T. et al. LHCb topological trigger reoptimization. J. Phys.: Conf. Ser. 664, 082025 (2015).
Adinolfi, M. et al. Performance of the LHCb RICH detector at the LHC. Eur. Phys. J. C 73, 2431 (2013).
Skwarnicki, T. A Study of the Radiative Cascade Transitions between the Upsilon-Prime and Upsilon Resonances. PhD thesis, Institute of Nuclear Physics (1986); http://inspirehep.net/record/230779/.
ARGUS Collaboration. Search for hadronic b → u decays. Phys. Lett. B 241, 278 (1990).
Cowan, G. A., Craik, D. C. & Needham, M. D. RapidSim: an application for the fast simulation of heavy-quark hadron decays. Comput. Phys. Commun. 214, 239 (2017).
LHCb Collaboration. Measurement of the \({B}_{s}^{0}\to {\mu }^{+}{\mu }^{-}\) decay properties and search for the B0 → μ+μ− and \({B}_{s}^{0}\to {\mu }^{+}{\mu }^{-}\) decays. Phys. Rev. D 105, 012010 (2022).
Pivk, M. & Le Diberder, F. R. sPlot: a statistical tool to unfold data distributions. Nucl. Instrum. Methods Phys. Res. A 555, 356 (2005).
LHCb Collaboration. Search for CP violation in \({\Lambda }_{b}^{0}\to p{K}^{-}\) and \({\Lambda }_{b}^{0}\to p{K}^{-}\) decays. Phys. Lett. B 784, 101 (2018).
LHCb Collaboration. Measurement of \({B}^{0},{B}_{s}^{0},{B}^{+}\) and \({B}^{0},{B}_{s}^{0},{B}^{+}\) production asymmetries in 7 and 8 TeV proton-proton collisions. Phys. Lett. B 774, 139 (2017).
LHCb Collaboration. Measurement of CP asymmetry in D0 → K−K+ and D0 → π−π+ decays. J. High Energy Phys. 07, 041 (2014).
LHCb Collaboration. Observation of the mass difference between neutral charm-meson eigenstates. Phys. Rev. Lett. 127, 111801 (2021). Erratum 131, 079901 (2023).
Anderlini, L. et al. The PIDCalib Package, LHCb-PUB-2016-021 (2016); http://cdsweb.cern.ch/search?p=LHCb-PUB-2016-021&f=reportnumber&action_search=Search&c=LHCb+Notes.
Aaij, R. et al. Selection and processing of calibration samples to measure the particle identification performance of the LHCb experiment in run 2. EPJ Tech. Instrum. 6, 1 (2019).
Aaij, R. et al. The LHCb trigger and its performance in 2011. J. Instrum. 8, P04022 (2013).
Santos, D. M. & Dupertuis, F. Mass distributions marginalized over per-event errors. Nucl. Instrum. Methods Phys. Res. A 764, 150 (2014).
Liu, X.-H., Wang, Q. & Zhao, Q. Understanding the newly observed heavy pentaquark candidates. Phys. Lett. B 757, 231 (2016).
Gross, E. & Vitells, O. Trial factors for the look elsewhere effect in high energy physics. Eur. Phys. J. C 70, 525 (2010).
Acknowledgements
We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: ARC (Australia); CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MCID/IFA (Romania); MICIU and AEI (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); and DOE NP and NSF (USA). We acknowledge the computing resources provided by ARDC (Australia); CBPF (Brazil); CERN, IHEP and LZU (China); IN2P3 (France); KIT and DESY (Germany); INFN (Italy); SURF (Netherlands); Polish WLCG (Poland); IFIN-HH (Romania); PIC (Spain); CSCS (Switzerland); and GridPP (United Kingdom). We are indebted to the communities behind the various open-source software packages on which we depend. Individual groups or members have received support from Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities and Sci. & Tech. Program of Guangzhou (China); Minciencias (Colombia); EPLANET, Marie Skłodowska-Curie Actions, ERC and NextGenerationEU (European Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); Alexander-von-Humboldt Foundation (Germany); ICSC (Italy); Severo Ochoa and María de Maeztu Units of Excellence, GVA, XuntaGal, GENCAT, InTalent-Inditex and Prog. Atracción Talento CM (Spain); SRC (Sweden); and the Leverhulme Trust, the Royal Society and UKRI (United Kingdom). Unaffiliated authors are affiliated with an institute formerly covered by a cooperation agreement with CERN.
Funding
Open access funding provided by CERN (European Organization for Nuclear Research).
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Alexander Lenz, Christoph Schwanda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Mass distributions of the control channel together with the fit projections.
Displayed are the mass distributions for the control channel: (a) \({\Lambda }_{b}^{0}\to {\Lambda }_{c}^{+}{\pi }^{-}\), (b) \({\bar{\Lambda }}_{b}^{0}\to {\bar{\Lambda }}_{c}^{-}{\pi }^{+}\).
Extended Data Fig. 2 Distributions of two-body and three-body masses of final-state particles.
The mass distributions of (a) pK− and (b) π+π−, corresponding to the \({\Lambda }_{b}^{0}\to R(p{K}^{-})R({\pi }^{+}{\pi }^{-})\) phase-space region; (c) pπ− and (d) K−π+, corresponding to the \({\Lambda }_{b}^{0}\to R(p{\pi }^{-})R({K}^{-}{\pi }^{+})\) phase-space region; (e) pπ+π−, representing the \({\Lambda }_{b}^{0}\to R(p{\pi }^{+}{\pi }^{-}){K}^{-}\) phase-space region; and (f) K−π+π−, representing the \({\Lambda }_{b}^{0}\to R({K}^{-}{\pi }^{+}{\pi }^{-})p\) phase-space region. The \({\Lambda }_{b}^{0}\) and \({\bar{\Lambda }}_{b}^{0}\) samples are combined for the plots.
Extended Data Fig. 3 Mass distributions in regions of phase space with the fit projections also shown.
Mass distributions of \({\Lambda }_{b}^{0}\to p{K}^{-}{\pi }^{+}{\pi }^{-}\) and \({\bar{\Lambda }}_{b}^{0}\to \overline{p}{K}^{+}{\pi }^{-}{\pi }^{+}\) for (a, b) \({\Lambda }_{b}^{0}\to R(p{K}^{-})R({\pi }^{+}{\pi }^{-})\), (c, d) \({\Lambda }_{b}^{0}\to R(p{\pi }^{-})R({\pi }^{+}{K}^{-})\), and (e, f) \({\Lambda }_{b}^{0}\to R({K}^{-}{\pi }^{+}{\pi }^{-})p\) decays.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
LHCb Collaboration. Observation of charge–parity symmetry breaking in baryon decays. Nature 643, 1223–1228 (2025). https://doi.org/10.1038/s41586-025-09119-3
Received: 11 March 2025
Accepted: 08 May 2025
Published: 16 July 2025
Issue Date: 31 July 2025
DOI: https://doi.org/10.1038/s41586-025-09119-3
.png)

![How Do CPUs Work? The Engineering That Runs the Digital World [video]](https://www.youtube.com/img/desktop/supported_browsers/chrome.png)